934 resultados para 3-DIMENSIONAL CONFORMAL RADIOTHERAPY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Open skull surgery of deeply located intracerebral lesions requires precise determination of the treatment area in 3-dimensional (3-D) space. 3-D MRI can give important additional information in presurgical determination of the surgical approach to the target, taking into account highly functional brain areas and important vascular structures. The day before surgery, a grid composed of 9 tubings intersecting at 90° at 1 cm intervals and filled with a Q1SO4 solution is firmly attached to the skin of the patient’s head in the presumed region of the craniotomy. A 3-D turbo-FLASH sequence is then performed in the sagittal plane after intravenous Gd-DOTA injection on a IT Magnetom. 3-D surface reconstruction of the cortical gyri and sulci is performed. Once the gyri are identified, the 3-D program is then implemented in order to perform a color display of the cortical veins and of the tumor boundaries. The surgical access is then chosen by the surgeon, taking into account highly functional areas. Finally, the boundaries of the tumor are projected on the cortex reconstruction and on the external reference placed on the skin. The entry place for surgery as well as the size of craniotomy are drawn on the skin and the tubed grid is removed. The accuracy of this method tested in 9 patients with deeply located brain tumors or arteriovenous malformations was very satisfactory. In daily practice, this method is a valuable technique providing important clinical information in determining the shortest and safest way through the brain tissue, decreasing possible functional deficit and reducing craniotomy size in cases of difficult to access deep brain areas. Our method does not require a stereotactic frame permanently fixed to the head of the patient during surgery. © 1994 S. Karger AG, Basel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Utilizing the framework of effective surface quasi-geostrophic (eSQG) theory, we explored the potential of reconstructing the 3D upper ocean circulation structures, including the balanced vertical velocity (w) field, from high-resolution sea surface height (SSH) data of the planned SWOT satellite mission. Specifically, we utilized the 1/30°, submesoscale-resolving, OFES model output and subjected it through the SWOT simulator that generates the along-swath SSH data with expected measurement errors. Focusing on the Kuroshio Extension region in the North Pacific where regional Rossby numbers range from 0.22 to 0.32, we found that the eSQG dynamics constitutes an effective framework for reconstructing the 3D upper ocean circulation field. Using the modeled SSH data as input, the eSQG-reconstructed relative vorticity (ζ) and w fields are found to reach a correlation of 0.7–0.9 and 0.6–0.7, respectively, in the 1,000m upper ocean when compared to the original model output. Degradation due to the SWOT sampling and measurement errors in the input SSH data for the ζ and w reconstructions is found to be moderate, 5–25% for the 3D ζ field and 15-35% for the 3D w field. There exists a tendency for this degradation ratio to decrease in regions where the regional eddy variability (or Rossby number) increases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: Due to the high prevalence of renal failure in transcatheter aortic valve replacement (TAVR) candidates, a non-contrast MR technique is desirable for pre-procedural planning. We sought to evaluate the feasibility of a novel, non-contrast, free-breathing, self-navigated three-dimensional (SN3D) MR sequence for imaging the aorta from its root to the iliofemoral run-off in comparison to non-contrast two-dimensional-balanced steady-state free-precession (2D-bSSFP) imaging. METHODS: SN3D [field of view (FOV), 220-370 mm(3); slice thickness, 1.15 mm; repetition/echo time (TR/TE), 3.1/1.5 ms; and flip angle, 115°] and 2D-bSSFP acquisitions (FOV, 340 mm; slice thickness, 6 mm; TR/TE, 2.3/1.1 ms; flip angle, 77°) were performed in 10 healthy subjects (all male; mean age, 30.3 ± 4.3 yrs) using a 1.5-T MRI system. Aortic root measurements and qualitative image ratings (four-point Likert-scale) were compared. RESULTS: The mean effective aortic annulus diameter was similar for 2D-bSSFP and SN3D (26.7 ± 0.7 vs. 26.1 ± 0.9 mm, p = 0.23). The mean image quality of 2D-bSSFP (4; IQR 3-4) was rated slightly higher (p = 0.03) than SN3D (3; IQR 2-4). The mean total acquisition time for SN3D imaging was 12.8 ± 2.4 min. CONCLUSIONS: Our results suggest that a novel SN3D sequence allows rapid, free-breathing assessment of the aortic root and the aortoiliofemoral system without administration of contrast medium. KEY POINTS: • The prevalence of renal failure is high among TAVR candidates. • Non-contrast 3D MR angiography allows for TAVR procedure planning. • The self-navigated sequence provides a significantly reduced scanning time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A prototype 3-dimensional (3D) anode, based on multiwall carbon nanotubes (MWCNTs), for Li-ion batteries (LIBs), with potential use in Electric Vehicles (EVs) was investigated. The unique 3D design of the anode allowed much higher areal mass density of MWCNTs as active materials, resulting in more amount of Li+ ion intake, compared to that of a conventional 2D counterpart. Furthermore, 3D amorphous Si/MWCNTs hybrid structure offered enhancement in electrochemical response (specific capacity 549 mAhg-1). Also, an anode stack was fabricated to further increase the areal or volumetric mass density of MWCNTs. An areal mass density of the anode stack 34.9 mg/cm2 was attained, which is 1,342% higher than the value for a single layer 2.6 mg/cm2. Furthermore, the binder-assisted and hot-pressed anode stack yielded the average reversible, stable gravimetric and volumetric specific capacities of 213 mAhg-1 and 265 mAh/cm3, respectively (at 0.5C). Moreover, a large-scale patterned novel flexible 3D MWCNTs-graphene-polyethylene terephthalate (PET) anode structure was prepared. It generated a reversible specific capacity of 153 mAhg-1 at 0.17C and cycling stability of 130 mAhg-1 up to 50 cycles at 1.7C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the Cauchy problem for the Laplace equation in 3-dimensional doubly-connected domains, that is the reconstruction of a harmonic function from knowledge of the function values and normal derivative on the outer of two closed boundary surfaces. We employ the alternating iterative method, which is a regularizing procedure for the stable determination of the solution. In each iteration step, mixed boundary value problems are solved. The solution to each mixed problem is represented as a sum of two single-layer potentials giving two unknown densities (one for each of the two boundary surfaces) to determine; matching the given boundary data gives a system of boundary integral equations to be solved for the densities. For the discretisation, Weinert's method [24] is employed, which generates a Galerkin-type procedure for the numerical solution via rewriting the boundary integrals over the unit sphere and expanding the densities in terms of spherical harmonics. Numerical results are included as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose
Recent in vitro results have shown significant contributions to cell killing from signaling effects at doses that are typically used in radiation therapy. This study investigates whether these in vitro observations can be reconciled with in vivo knowledge and how signaling may have an impact on future developments in radiation therapy.
Methods and Materials
Prostate cancer treatment plans were generated for a series of 10 patients using 3-dimensional conformal therapy, intensity modulated radiation therapy (IMRT), and volumetric modulated arc therapy techniques. These plans were evaluated using mathematical models of survival following modulated radiation exposures that were developed from in vitro observations and incorporate the effects of intercellular signaling. The impact on dose-volume histograms and mean doses were evaluated by converting these survival levels into "signaling-adjusted doses" for comparison.
Results
Inclusion of intercellular communication leads to significant differences between the signalling-adjusted and physical doses across a large volume. Organs in low-dose regions near target volumes see the largest increases, with mean signaling-adjusted bladder doses increasing from 23 to 33 Gy in IMRT plans. By contrast, in high-dose regions, there is a small decrease in signaling-adjusted dose due to reduced contributions from neighboring cells, with planning target volume mean doses falling from 74 to 71 Gy in IMRT. Overall, however, the dose distributions remain broadly similar, and comparisons between the treatment modalities are largely unchanged whether physical or signaling-adjusted dose is compared. Conclusions Although incorporating cellular signaling significantly affects cell killing in low-dose regions and suggests a different interpretation for many phenomena, their effect in high-dose regions for typical planning techniques is comparatively small. This indicates that the significant signaling effects observed in vitro are not contradicted by comparison with clinical observations. Future investigations are needed to validate these effects in vivo and to quantify their ranges and potential impact on more advanced radiation therapy techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional radiotherapy of bulky tumors has certain limitations. Spatially fractionated radiation therapy (GRID) and intensity modulated radiotherapy (IMRT) are examples of advanced modulated beam therapies that help in significant reductions in normal tissue damage. GRID refers to the delivery of a single high dose of radiation to a large treatment area that is divided into several smaller fields, while IMRT allows improved dose conformity to the tumor target compared to conventional three-dimensional conformal radiotherapy. In this review, we consider spatially fractionated radiotherapy approaches focusing on GRID and IMRT, and present complementary evidence from different studies which support the role of radiation induced signaling effects in the overall radiobiological rationale for these treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Different international target volume delineation guidelines exist and different treatment techniques are available for salvage radiation therapy (RT) for recurrent prostate cancer, but less is known regarding their respective applicability in clinical practice. METHODS AND MATERIALS A randomized phase III trial testing 64 Gy vs 70 Gy salvage RT was accompanied by an intense quality assurance program including a site-specific and study-specific questionnaire and a dummy run (DR). Target volume delineation was performed according to the European Organisation for the Research and Treatment of Cancer guidelines, and a DR-based treatment plan was established for 70 Gy. Major and minor protocol deviations were noted, interobserver agreement of delineated target contours was assessed, and dose-volume histogram (DVH) parameters of different treatment techniques were compared. RESULTS Thirty European centers participated, 43% of which were using 3-dimensional conformal RT (3D-CRT), with the remaining centers using intensity modulated RT (IMRT) or volumetric modulated arc technique (VMAT). The first submitted version of the DR contained major deviations in 21 of 30 (70%) centers, mostly caused by inappropriately defined or lack of prostate bed (PB). All but 5 centers completed the DR successfully with their second submitted version. The interobserver agreement of the PB was moderate and was improved by the DR review, as indicated by an increased κ value (0.59 vs 0.55), mean sensitivity (0.64 vs 0.58), volume of total agreement (3.9 vs 3.3 cm(3)), and decrease in the union volume (79.3 vs 84.2 cm(3)). Rectal and bladder wall DVH parameters of IMRT and VMAT vs 3D-CRT plans were not significantly different. CONCLUSIONS The interobserver agreement of PB delineation was moderate but was improved by the DR. Major deviations could be identified for the majority of centers. The DR has improved the acquaintance of the participating centers with the trial protocol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and purpose: To investigate the potential of intensity-modulated radiotherapy (IMRT) to reduce lung irradiation in the treatment of oesophageal carcinoma with radical radiotherapy.Materials and methods: A treatment planning study was performed to compare two-phase conformal radiotherapy (CFRT) with IMRT in five patients. The CFRT plans consisted of anterior, posterior and bilateral posterior oblique fields, while the IMRT plans consisted of either nine equispaced fields (9F), or four fields (4F) with orientations equal to the CFRT plans. IMRT plans with seven, five or three equispaced fields were also investigated in one patient. Treatment plans were compared using dose-volume histograms and normal tissue complication probabilities.Results: The 9F IMRT plan was unable to improve on the homogeneity of dose to the planning target volume (PTV), compared with the CFRT plan (dose range, 16.9+/-4.5 (1 SD) vs. 12.4+/-3.9%; P=0.06). Similarly, the 9F IMRT plan was unable to reduce the mean lung dose (11.7+/-3.2 vs. 11.0+/-2.9 Gy; P=0.2). Similar results were obtained for seven, five and three equispaced fields in the single patient studied. The 4F IMRT plan provided comparable PTV dose homogeneity with the CFRT plan (11.8+/-3.3 vs. 12.4+/-3.9%; P=0.6), with reduced mean lung dose (9.5+/-2.3 vs 11.0+/-2.9 Gy; P=0.001).Conclusions: IMRT using nine equispaced fields provided no improvement over CFRT. This was because the larger number of fields in the IMRT plan distributed a low dose over the entire lung. In contrast, IMRT using four fields equal to the CFRT fields offered an improvement in lung sparing. Thus, IMRT with a few carefully chosen field directions may lead to a modest reduction in pneumonitis, or allow tumour dose escalation within the currently accepted lung toxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the delivery and portal imaging of one square-field and one conformal radiotherapy treatment was simulated using the Monte Carlo codes BEAMnrc and DOSXYZnrc. The treatment fields were delivered to a humanoid phantom from different angles by a 6 MV photon beam linear accelerator, with an amorphous-silicon electronic portal imaging device (a-Si EPID) used to provide images of the phantom generated by each field. The virtual phantom preparation code CTCombine was used to combine a computed-tomography-derived model of the irradiated phantom with a simple, rectilinear model of the a-Si EPID, at each beam angle used in the treatment. Comparison of the resulting experimental and simulated a-Si EPID images showed good agreement, within \[gamma](3%, 3 mm), indicating that this method may be useful in providing accurate Monte Carlo predictions of clinical a-Si EPID images, for use in the verification of complex radiotherapy treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within the framework of the pilot heavy-ion therapy facility at GSI equipped with an active beam delivery system of advanced raster scanning technique, a feasibility study on actively conformal heavy-ion irradiation to moving tumors has been experimentally conducted. Laterally, real-time corrections to the beam scanning parameters by the raster scanner, leading to an active beam tracing, compensate for the lateral motion of a target volume. Longitudinally, a mechanically driven wedge energy degrader (called depth scanner) is applied to adjust the beam energy so as to locate the high-dose Bragg peak of heavy ion beam to the slice under treatment for the moving target volume. It has been experimentally shown that compensations for lateral target motion by the raster scanner and longitudinal target shift by the depth scanner are feasible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A phantom was designed and implemented for the delivery of treatment plans to cells in vitro. Single beam, 3D-conformal radiotherapy (3D-CRT) plans, inverse planned five-field intensity-modulated radiation therapy (IMRT), nine-field IMRT, single-arc volumetric modulated arc therapy (VMAT) and dual-arc VMAT plans were created on a CT scan of the phantom to deliver 3 Gy to the cell layer and verified using a Farmer chamber, 2D ionization chamber array and gafchromic film. Each plan was delivered to a 2D ionization chamber array to assess the temporal characteristics of the plan including delivery time and 'cell's eye view' for the central ionization chamber. The effective fraction time, defined as the percentage of the fraction time where any dose is delivered to each point examined, was also assessed across 120 ionization chambers. Each plan was delivered to human prostate cancer DU-145 cells and normal primary AGO-1522b fibroblast cells. Uniform beams were delivered to each cell line with the delivery time varying from 0.5 to 20.54 min. Effective fraction time was found to increase with a decreasing number of beams or arcs. For a uniform beam delivery, AGO-1552b cells exhibited a statistically significant trend towards increased survival with increased delivery time. This trend was not repeated when the different modulated clinical delivery methods were used. Less sensitive DU-145 cells did not exhibit a significant trend towards increased survival with increased delivery time for either the uniform or clinical deliveries. These results confirm that dose rate effects are most prevalent in more radiosensitive cells. Cell survival data generated from uniform beam deliveries over a range of dose rates and delivery times may not always be accurate in predicting response to more complex delivery techniques, such as IMRT and VMAT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los pacientes con cáncer de próstata con tumores de riesgo bajo e intermedio de recaída pueden ser tratados con cirugía, radioterapia, y en casos seleccionados observación. Los pacientes en nuestro país, son tratados con prostatectomía radical, los cuales tienen una probabilidad de recaída bioquímica del 15% al 40% a 5 años (1,2,3). Metodología: estudio descriptivo, retrospectivo, tipo serie de casos. Se revisaron los registros de todos que recibieron radioterapia de salvamento que ofrece para a aquellos pacientes que ya tienen recaída bioquímica o local después de la Prostatectomia Radical, entre enero de 2003 y diciembre de 2007. Resultado: entre los 40 pacientes elegibles para el análisis, la media de seguimiento fue de 2,17 años, con una desviación estándar de 1,5 años, con un rango de 0 a 58 meses, la media de la edad fue de 66,12 años, con una desviación estándar de 6,63, con un rango entre 50 y 78 años. Todos los pacientes le realizaron prostatectomía. La media de supervivencia libre de enfermedad con intervalos de confianza del 95% fue de 4,58 años (2,24 a 4,92 años). Discusión: analizados los resultados en éste grupo de pacientes con cáncer de próstata sometidos a prostatectomía radical y radioterapia como terapia de salvamento, con un seguimiento promedio de 2,17 años, observamos que los resultados obtenidos en el presente estudio son inferiores a los registrados en otros reportes en la literatura (16-20).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)