931 resultados para 230101 Mathematical Logic, Set Theory, Lattices And Combinatorics
Resumo:
The minimum number of incomplete blocks required to cover, exactly lambda times, all t-element subsets from a set V of cardinality v (v > t) is denoted by y(lambda, t; v). The value of g(2, 2; v) is known for v = 3, 4,..., 11. It was previously known that 14 less than or equal to g(2, 2; 12) less than or equal to 16. We prove that g(2, 2; 12) greater than or equal to 15.
Resumo:
Cyclic m-cycle systems of order v are constructed for all m greater than or equal to 3, and all v = 1(mod 2m). This result has been settled previously by several authors. In this paper, we provide a different solution, as a consequence of a more general result, which handles all cases using similar methods and which also allows us to prove necessary and sufficient conditions for the existence of a cyclic m-cycle system of K-v - F for all m greater than or equal to 3, and all v = 2(mod 2m).
Resumo:
A theta graph is a graph consisting of three pairwise internally disjoint paths with common end points. Methods for decomposing the complete graph K-nu into theta graphs with fewer than ten edges are given.
Resumo:
We describe a direct method of partitioning the 840 Steiner triple systems of order 9 into 120 large sets. The method produces partitions in which all of the large sets are isomorphic and we apply the method to each of the two non-isomorphic large sets of STS(9).
Resumo:
Let K(r, s, t) denote the complete tripartite graph with partite sets of size r, s and t, where r less than or equal to s less than or equal to t. Let D be the graph consisting of a triangle with an edge attached. We show that K(r, s, t) may be decomposed into copies of D if and only if 4 divides rs + st + rt and t less than or equal to 3rs/(r + s).
Resumo:
In this note we first introduce balanced critical sets and near balanced critical sets in Latin squares. Then we prove that there exist balanced critical sets in the back circulant Latin squares of order 3n for n even. Using this result we decompose the back circulant Latin squares of order 3n, n even, into three isotopic and disjoint balanced critical sets each of size 3n. We also find near balanced critical sets in the back circulant Latin squares of order 3n for n odd. Finally, we examine representatives of each main class of Latin squares of order up to six in order to determine which main classes contain balanced or near balanced critical sets.
Resumo:
A critical set in a Latin square of order n is a set of entries from the square which can be embedded in precisely one Latin square of order n, Such that if any element of the critical set. is deleted, the remaining set can be embedded, in more than one Latin square of order n.. In this paper we find all the critical sets of different sizes in the Latin squares of order at most six. We count the number of main and isotopy classes of these critical sets and classify critical sets from the main classes into various strengths. Some observations are made about the relationship between the numbers of classes, particularly in the 6 x 6 case. Finally some examples are given of each type of critical set.
Resumo:
A cube factorization of the complete graph on n vertices, K-n, is a 3-factorization of & in which the components of each factor are cubes. We show that there exists a cube factorization of & if and only if n equivalent to 16 (mod 24), thus providing a new family of uniform 3 -factorizations as well as a partial solution to an open problem posed by Kotzig in 1979. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Let G be a graph that admits a perfect matching. A forcing set for a perfect matching M of G is a subset S of M, such that S is contained in no other perfect matching of G. This notion has arisen in the study of finding resonance structures of a given molecule in chemistry. Similar concepts have been studied for block designs and graph colorings under the name defining set, and for Latin squares under the name critical set. There is some study of forcing sets of hexagonal systems in the context of chemistry, but only a few other classes of graphs have been considered. For the hypercubes Q(n), it turns out to be a very interesting notion which includes many challenging problems. In this paper we study the computational complexity of finding the forcing number of graphs, and we give some results on the possible values of forcing number for different matchings of the hypercube Q(n). Also we show an application to critical sets in back circulant Latin rectangles. (C) 2003 Elsevier B.V. All rights reserved.