959 resultados para 2 Genes
Resumo:
O câncer de mama é um dos tumores de maior incidência na mulher, e por isso, muitas pesquisas vêm sendo realizadas, desde a avaliação das características epidemiológicas, à dinâmica biocelular e o tratamento desta doença. Na avaliação de respostas ao tratamento, os fatores preditivos são marcadores que auxiliam na escolha da melhor droga a ser usada. Esta dissertação teve o objetivo de avaliar os genes de receptores de estrogênio e progesterona, HER-2 e C-MYC em tumores localmente avançados da mama, como fatores preditivos de resposta à quimioterapia neoadjuvante. Estudaram-se fragmentos da neoplasia maligna mamária de 50 pacientes com carcinoma ductal infiltrativo, com estadiamento clínico E-III e tratadas com quimioterapia neoadjuvante. Utilizaram-se as técnicas de imunohistoquímica e de hibridização in situ por fluorescência (FISH). A análise dos receptores hormonais não apresentou diferença estatisticamente significativa comparando as pacientes com resposta satisfatória à quimioterapia, das insatisfatórias; a análise do HER-2 apresentou significância apenas para as respostas satisfatórias, onde houve baixa amplificação deste gene. Em relação ao C-MYC observou-se uma diferença estatisticamente significativa comparando a alta amplificação deste gene a uma resposta insatisfatória à quimioterapia. O estudo concluiu que o gene C-MYC pode ser um importante marcador de predição nos tratamentos quimioterápicos neoadjuvantes usados em câncer mamário.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Transmissible venereal tumor (TVT) is a neoplasm of round cells with plasmocytoid or lymphocytoid appearance. The tumor presents several particularities, which have been the subject of numerous studies; however there still have investigations that need to be done. For example, a progressive increase of highly aggressive tumors with varying response to chemotherapy -including resistance- has been evidenced in recent years. There is scientific interest to understand these differences, allowing predicting possible clinical outcomes in affected dogs and increasingly searching adequate and individualized therapy. This review focuses on presenting possible implications of the expression of MDR-1 (P-glycoprotein), TP53, BCL-2, and BAX genes, regarding resistance to chemotherapy and/or the biologic behavior of TVT
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
Programa de Doctorado: Microbiología Clínica y Enfermedades Infecciosas
Resumo:
Programa de doctorado: Avances en medicina interna
Resumo:
Cancer is a multi-step process in which both the activation of oncogenes and the inactivation of tumor suppressor genes alter the normal cellular programs to a state of proliferation and growth. The regulation of a number of tumor suppressor genes and the mechanism underlying the tumor suppression have been intensively studied. Hugl-1 and Hugl-2, the human homologues of Drosophila lgl are shown to be down-regulated in a variety of cancers including breast, colon, lung and melanoma, but the mechanism responsible for loss of expression is not yet known. The regulation of gene expression is influenced by factors inducing or repressing transcription. The present study was focused on the identification and characterization of the active promoters of Hugl-1 and Hugl-2. Further, the regulation of the promoter and functional consequences of this regulation by specific transcription factors was analyzed. Experiments to delineate the function of the mouse homologue of Hugl-2, mgl2 using transgenic mice model were performed. This study shows that the active promoter for both Hugl-1 and Hugl-2 is located 1000bp upstream of transcription start sites. The study also provides first insight into the regulation of Hugl-2 by an important EMT transcriptional regulator, Snail. Direct binding of Snail to four E-boxes present in Hugl-2 promoter region results in repression of Hugl-2 expression. Hugl-1 and Hugl-2 plays pivotal role in establishment and maintenance of cell polarity in a diversity of cell types and organisms. Loss of epithelial cell polarity is a prerequisite for cancer progression and metastasis and is an important step in inducing EMT in cells. Regulation of Hugl-2 by Snail suggests one of the initial events towards loss of epithelial cell polarity during Snail-mediated EMT. Another important finding of this study is the induction of Hugl-2 expression can reverse the Snail-driven EMT. Inducing Hugl-2 in Snail expressing cells results in the re-expression of epithelial markers E-cadherin and Cytokeratin-18. Further, Hugl-2 also reduces the rate of tumor growth, cell migration and induces the epithelial phenotype in 3D culture model in cells expressing Snail. Studies to gain insight into the signaling pathways involved in reversing Snail-mediated EMT revealed that induction of Hugl-2 expression interferes with the activation of extracellular receptor kinase, Erk. Functional aspects of mammalian lgl in vivo was investigated by establishing mgl2 conditional knockout mice. Though disruption of mgl2 gene in hepatic tissues did not alter the growth and development, ubiquitous disruption of mgl2 gene causes embryonic lethality which is evident by the fact that no mgl2-/- mice were born.
Resumo:
OBJECTIVE: To determine whether a specifically designed bispecific (Bcl-2/Bcl-xL) antisense oligonucleotide (ASO) induces apoptosis and enhances chemosensitivity in human prostate cancer LNCaP cells, as Bcl-2 and Bcl-xL are both anti-apoptotic genes associated with treatment resistance and tumour progression in many malignancies, including prostate cancer. MATERIALS AND METHODS: Inhibition of Bcl-2 and Bcl-xL expression by the bispecific ASO was evaluated using real-time reverse transcription-polymerase chain reaction and Western blotting, while growth inhibition and induction of apoptosis were analysed by a crystal violet assay, flow cytometry and Western blotting of apoptosis-relevant proteins. The effect of combined treatment with bispecific ASO and chemotherapy or small-interference RNA (siRNA) targeting the clusterin gene was also investigated. RESULTS: Bispecific ASO reduced Bcl-2 and Bcl-xL expression in LNCaP cells in a dose-dependent manner. There was cell growth inhibition, increases in the sub-G0-G1 fraction, and cleavage of caspase-3 and poly(ADP-Ribose) polymerase proteins in LNCaP cells after bispecific ASO treatment. Interestingly, Bcl-2/Bcl-xL bispecific ASO treatment also resulted in the down-regulation of Mcl-1 and up-regulation of Bax. The sensitivity of LNCaP cells to mitoxantrone, docetaxel or paclitaxel was significantly increased, reducing the 50% inhibitory concentration by 45%, 80% or 90%, respectively. Furthermore, the apoptotic induction by Bcl-2/Bcl-xL bispecific ASO was synergistically enhanced by siRNA-mediated inhibition of clusterin, a cytoprotective chaperone that interacts with and inhibits activated Bax. CONCLUSIONS: These findings support the concept of the targeted suppression of Bcl-2 anti-apoptotic family members using multitarget inhibition strategies for prostate cancer, through the effective induction of apoptosis.
Resumo:
Aspen (Populus tremuloides) trees growing under elevated [CO2] at a free-air CO2 enrichment (FACE) site have produced significantly more biomass compared to control trees. The molecular mechanisms underlying the observed increase in biomass productivity was investigated by producing transcriptomic profiles of the vascular cambium zone (VCZ) and leaves, followed by a comparative study to identify genes and pathways that showed significant changes following long-term exposure to elevated [CO2]. This study is mainly to verify if genetic modification of a few selected candidate genes including CAP1, CKX6, and ASML2 that are expressed in vascular cambium in response to elevated [CO2] can cause the changes in plant growth and development. To this end, these three genes were cloned into both sense and antisense constructs. Then antisense and sense transgenic lines of above-mentioned genes were developed. 15 events were generated for 5 constructs, which were confirmed with regular PCR and RT-PCR. Confirmed plants were planted in greenhouse for growth and phenotypic characterization. The expression of CAP1, CKX6 and ASML2 in antisense plants was measured by real-time RT-PCR, and the changes caused by gene interference in cambial growth were studies by analyzing the microscopic sections made from the antisense transgenic plants. It has been found that 1) CAP1 is mainly expressed in xylem and root. 2) RNAi suppression of CAP1 significantly affected height and diameter. 3) CAP1, ASML2 and CKX6 affected xylem and phloem cell proliferation and elongation. Due to the delay in regenerating sense transgenic plants, the characterization of sense transgenic plants is limited to growth only.
Resumo:
OBJECTIVE: According to recent reports, the synovial membrane may contain mesenchymal stem cells with the potential to differentiate into chondrocytes under appropriate conditions. In order to assess the usefulness of synovium-derived progenitor cells for the purposes of cartilage tissue engineering, we explored their requirements for the expression of chondrocyte-specific genes after expansion in vitro. DESIGN: Mesenchymal progenitor cells were isolated from the synovial membranes of bovine shoulder joints and expanded in two-dimensions on plastic surfaces. They were then seeded either as micromass cultures or as single cells within alginate gels, which were cultured in serum-free medium. Under these three-dimensional conditions, chondrogenesis is known to be supported and maintained. Cell cultures were exposed either to bone morphogenetic protein-2 (BMP-2) or to isoforms of transforming growth factor-beta (TGF-beta). The levels of mRNA for Sox9, collagen types I and II and aggrecan were determined by RT-PCR. RESULTS: When transferred to alginate gel cultures, the fibroblast-like synovial cells assumed a rounded form. BMP-2, but not isoforms of TGF-beta, stimulated, in a dose-dependent manner, the production of messenger RNAs (mRNAs) for Sox9, type II collagen and aggrecan. Under optimal conditions, the expression levels of cartilage-specific genes were comparable to those within cultured articular cartilage chondrocytes. However, in contrast to cultured articular cartilage chondrocytes, synovial cells exposed to BMP-2 continued to express the mRNA for alpha1(I) collagen. CONCLUSIONS: This study demonstrates that bovine synovium-derived mesenchymal progenitor cells can be induced to express chondrocyte-specific genes. However, the differentiation process is not complete under the chosen conditions. The stimulation conditions required for full transformation must now be delineated.
Resumo:
Strassburg, Univ., Diss., 1891