994 resultados para 195-1202A


Relevância:

20.00% 20.00%

Publicador:

Resumo:

At the South Chamorro Seamount in the Mariana subduction zone, geochemical data of pore fluids recovered from Ocean Drilling Program Leg 195 Site 1200 indicate that these fluids evolved from dehydration of the underthrusting Pacific plate and upwelling of fluids to the surface through serpentinite mud volcanoes as cold springs at their summits. Physical conditions of the fluid source at 27 km were inferred to be at 100°-250°C and 0.8 GPa. The upwelling of fluid is more active near the spring in Holes 1200E and 1200A and becomes less so with increasing distance toward Hole 1200D. These pore fluids are depleted in Cl and Br, enriched in F (except in Hole 1200D) and B (up to 3500 µM), have low 11B (16-21), and have lower than seawater Br/Cl ratios. The mixing ratios between seawater and pore fluids is calculated to be ~2:1 at shallow depth. The F, Cl, and Br concentrations, together with B concentrations and B isotope ratios in the serpentinized igneous rocks and serpentine muds that include ultramafic clasts from Holes 1200A, 1200B, 1200D, 1200E, and 1200F, support the conclusion that the fluids involved in serpentinization originated from great depths; the dehydration of sediments and altered basalt at the top of the subducting Pacific plate released Cl, H2O, and B with enriched 10B. Calculation from B concentrations and upwelling rates indicate that B is efficiently recycled through this nonaccretionary subduction zone, as through others, and may contribute the critical missing B of the oceanic cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlorine isotope ratios were determined for volcanic gas, geothermal well, ash, and lava samples along the Izu-Bonin-Mariana volcanic front, serpentinite clasts and muds from serpentine seamounts (Conical, South Chamorro, Torishima), basalts from the Guguan cross-chain, and sediments from Ocean Drilling Program (ODP) Sites 800, 801, 802, and 1149. There is no systematic variation in d37Cl values along the volcanic front in either gas or ash samples. In contrast, distinct variations occur across the arc, implying variations in the fluid source at different depths within the subduction zone. Serpentinite clasts and serpentine muds from the seamounts tap a source of ~30 km depth and have d37Cl values of structurally bound chloride of +0.4 per mil +/- 0.4 per mil (n = 24), identical to most seafloor serpentinites, suggesting a serpentinite (chrysotile and/or lizardite to antigorite transition) fluid source. Tapping deeper levels of the subduction zone (~115-130 km depth), volcanic gases and ashes have d37Cl values averaging -1.1 per mil +/- 1.0 per mil (n = 29), precisely overlapping the range measured in sediments from ODP cores (-1.1 per mil +/- +0.7 per mil, n = 11) and limited altered oceanic crust (AOC). Both sediments and AOC are possible Cl sources in the volcanic front. The Guguan cross-chain basalts come from the greatest depths and have an average d37Cl value of +0.2 per mil +/- 0.2 per mil (n = 3), suggesting a second serpentine-derived source, in this case from antigorite breakdown at ~200 km depth.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The South Chamorro Seamount is a serpentinite mud volcano near the southern end of the Mariana forearc. The mud volcano was sampled by drilling during Ocean Drilling Program Leg 195. Samples of pore water squeezed from serpentinite mud were analyzed for stable isotope compositions of carbon in dissolved inorganic carbon and methane, sulfur in sulfate and sulfide, and oxygen in sulfate.