997 resultados para 189-1169A
Resumo:
Palynomorphs were studied in samples from Ocean Drilling Program (ODP) Leg 189, Holes 1172A and 1172D (East Tasman Plateau; 2620 m water depth). Besides organic walled dinoflagellate cysts (dinocysts), broad categories of other palynomorphs were quantified in terms of relative abundance. In this contribution, we provide an overview of the dinocyst distribution from the Maastrichtian to lowermost Oligocene and Quaternary intervals and illustrate main trends in palynomorph distribution. The uppermost Cretaceous-lowermost Oligocene succession of Site 1172 has a confident biomagnetostratigraphy, enabling us to tie early Paleogene Southern Hemisphere dinocyst events to the geomagnetic polarity timescale for the first time. Dinocyst species from the Maastrichtian to earliest Oligocene at Site 1172 are largely endemic ("Transantarctic Flora") or bipolar; cosmopolitan taxa are present in the background as well. The Maastrichtian-early late Eocene dinocyst assemblages are indicative of shallow-marine to restricted marine, pro-deltaic conditions, closely tied to a massive siliciclastic sequence. By middle late Eocene times (~35.5 Ma), the siliciclastic sequence gave way to a thin glauconitic unit, considered to reflect the deepening of the Tasmanian Gateway. This transition coincides with the most prominent change in dinocyst associations of the Paleogene. The turnover is inferred to reflect a change from marginal marine to more offshore conditions, with increased winnowing and oxidation. Overlying pelagic carbonate ooze of middle early Oligocene and younger age is virtually barren of organic microfossils, although Quaternary assemblages have been recovered. This aspect is taken to reflect average low sedimentation rates and well-oxygenated water masses during most of the Oligocene and Neogene. The few palynologically productive samples from the Oligocene-Quaternary interval have a stronger cosmopolitan to subtropical signature, with warm-water species being common to abundant.
Resumo:
Downcore oxygen and carbon stable isotope records of planktonic and benthic foraminifers and fine-fraction carbonate from the southern high latitudes provide critical paleohydrographic constraints on the evolution of the Southern Ocean climate. In particular, the potential effects of an intensified Antarctic Circumpolar Current on the thermal isolation and cooling of the southern high latitudes, production of cold deep waters, and, ultimately, accumulation of continental ice on Antarctica in the middle Miocene are matters of interest. Using sediment materials from Ocean Drilling Program Leg 189 Sites 1170 and 1172 off Tasmania, Ennyu and Arthur (2004, doi:10.1029/151GM13) established the surface- and deepwater stable isotope records in the Southern Ocean across the middle Miocene event of the east Antarctic ice sheet expansion and discussed the paleoclimate proxy records in terms of the thermal evolution of the southern high latitudes and its effect on deepwater circulation. This report provides data tables and other supporting information relevant to discussions presented in Ennyu and Arthur (2004, doi:10.1029/151GM13). Items included in this report are (1) the oxygen and carbon stable isotope data measured on the Miocene bulk fine-fraction (i.e., <63 µm, primarily polyspecific nannofossil assemblage) carbonate and planktonic and benthic foraminifers from Holes 1170A and 1172A and (2) the Miocene depth-age models for the two sites.