1000 resultados para 175-1082B


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fil: Ghilini, Anabela. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación. Instituto de Investigaciones en Humanidades y Ciencias Sociales (UNLP-CONICET); Argentina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fil: De Amézola, Gonzalo Alvaro. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación; Argentina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fil: García, Jonatan Gastón. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación; Argentina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An astronomically calibrated age model for the Pliocene section of Ocean Drilling Program Leg 175 Cape Basin Site 1085 based on magnetic susceptibility data was developed using shipboard biostratigraphic datums. The composite core magnetic susceptibility record was compiled using shipboard correlations between Holes 1085A and 1085B and then tuned to the record of orbital variations in eccentricity to generate an orbitally tuned age model. Magnetic susceptibility apparently records climate variations in the Cape Basin. Strong power spectra values at the 100- and 400-k.y. frequency suggest an orbital control on the beat of Pliocene climate change in the Cape Basin.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine the link between organic matter degradation, anaerobic methane oxidation (AMO), and sulfate depletion and explore how these processes potentially influence dolomitization. We determined rates and depths of AMO and dolomite formation for a variety of organic-rich sites along the west African Margin using data from Ocean Drilling Program (ODP) Leg 175. Rates of AMO are calculated from the diffusive fluxes of CH4 and SO4, and rates of dolomite formation are calculated from the diffusive flux of Mg. We find that the rates of dolomite formation are relatively constant regardless of the depth at which it is forming, indicating that the diffusive fluxes of Mg and Ca are not limiting. Based upon the calculated log IAP values, log K(sp) values for dolomite were found to narrowly range between -16.1 and -16.4. Dolomite formation is controlled in part by competition between AMO and methanogenesis, which controls the speciation of dissolved CO2. AMO increases the concentration of CO3[2-] through sulfate reduction, favoring dolomite formation, while methanogenesis increases the pCO2 of the pore waters, inhibiting dolomite formation. By regulating the pCO2 and alkalinity, methanogenesis and AMO can regulate the formation of dolomite in organic-rich marine sediments. In addition to providing a mechanistic link between AMO and dolomite formation, our findings provide a method by which the stability constant of dolomite can be calculated in modern sediments and allow prediction of regions and depth domains in which dolomite may be forming.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: