991 resultados para 169
Resumo:
Sulfide mineral major and trace element analyses were performed on more than 50 polished slabs representing mineralization from three seafloor hydrothermal massive sulfide deposits. Samples from the Bent Hill and ODP Mound massive sulfide deposits, both on the Juan de Fuca Ridge, can be contrasted with samples from the Trans-Atlantic Geotraverse (TAG) hydrothermal mound on the Mid-Atlantic Ridge. The massive sulfide at Bent Hill is predominantly pyrite and pyrrhotite, with increasing amounts of copper-bearing sulfide minerals at the base of the massive sulfide body and through the stockwork to an interval 200 m below seafloor that hosts high copper mineralization (Deep Copper Zone). ODP Mound contains much more abundant sphalerite and copper-bearing sulfides as compared to either Bent Hill or TAG, which are predominantly pyrite with much less abundant chalcopyrite. Copper-bearing sulfides from the Deep Copper Zone beneath Bent Hill and the lowest sampled interval of ODP Mound are petrographically and chemically similar, but distinct from copper-bearing minerals higher in either sequence.
Resumo:
Ocean Drilling Program Leg 169S retrieved a complete Holocene sequence from Saanich Inlet, British Columbia, Canada. Fish and diatom remains were extracted from sediments at Site 1034. Very small fish bones, teeth and scales were ubiquitous except in the lowermost glaciomarine clays; scales degraded with depth. In the identifiable fraction, Pacific herring were the most abundant with Pacific hake and cartilaginous fish yielding significant fractions. Fish remains appear just before 12 000 BP but greatest diversity does not occur until about 6500 BP. A smoothed abundance curve highlights two periods of maximal abundance at about 1500 and 6500 BP. Abundances in the last 1000 years are lower than the rest of the record. A correlation with abundances of seven phytoplankton taxa is significant; diatoms explain about a third of the variance. This study demonstrates the use of fish and diatoms from the same paleosedimentary matrix to examine millennia-scale correlations between primary and tertiary production.