997 resultados para 164-995A
Resumo:
Twenty-two trace elements in 355 sediment samples from Site 997 on the Blake Ridge were examined by inductively coupled plasma-optical emission spectrometry and inductively coupled plasma-mass spectrometry, for respective fractions of acid-soluble and insoluble compositions. Downhole profiles of these elements exhibit complicated fluctuations throughout late Miocene to Pleistocene, principally due to the variations in the acid-soluble fraction. Noncarbonate composition is given from the acid-insoluble residues, which permits us to recognize secular feature of selected element variance for four intervals. These intervals (I: 0-183 mbsf; II: 183- 440 mbsf; III: 440-618 mbsf; and IV: 618-750 mbsf) are interpreted to have originated from changes in the suite of sediments of particular sources and chemical composition, sedimentation rate, dilution of biogenic carbonate abundance, and possibly the current system that controlled deposition and reworking of the terrigenous materials.
Resumo:
Twenty routinely used nannofossil datums in the late Neogene and Quaternary were identified at three Blake Ridge sites drilled during Leg 164. The quantitative investigation of the nannofossil assemblages in 236 samples selected from Hole 994C provide new biostratigraphic and paleoceanographic information. Although mostly overlooked previously, Umbilicosphaera aequiscutum is an abundant component of the late Neogene flora, and its last occurrence at ~2.3 Ma is a useful new biostratigraphic event. Small Gephyrocapsa evolved within the upper part of Subzone CN11a (~4.3 Ma), and after an initial acme, it temporarily disappeared for 400 k.y., between 2.9 and 2.5 Ma. Medium-sized Gephyrocapsa evolved in the latest Pliocene ~2.2 Ma), and after two short temporary disappearances, common specimens occurred continuously just above the Pliocene/Pleistocene boundary. The base of Subzone CN13b should be recognized as the beginning of the continuous occurrence of medium-sized (>4 µm) Gephyrocapsa. Stratigraphic variation in abundance of the very small placoliths and Florisphaera profunda alternated, indicating potential of the former as a proxy for the paleoproductivity. At this site, it is likely that upwelling took place during three time periods in the late Neogene (6.0-4.6 Ma, 2.3-2.1 Ma, and 2.0-1.8 Ma) and also in the early Pleistocene (1.4-0.9 Ma). Weak upwelling is also likely to have occurred intermittently through the late Pliocene. Due to the sharp and abrupt turnover of the nannofossils, which resulted from an evolution of very competitive species, the paleoproductivity of the late Pleistocene is not clear. The site was mostly in an oligotrophic central gyre setting during the 4.6- to 2.3-Ma interval, intermittently between 2.1 and 1.4 Ma, and continuously for the last several tens of thousand years.
Resumo:
The isotopic characteristics of CH4 (d13C values range from -101.3 per mil to -61.1 per mil PDB, and dD values range from -256 per mil to -136 per mil SMOW) collected during Ocean Drilling Program (ODP) Leg 164 indicate that the CH4 was produced by microbial CO2 reduction and that there is not a significant contribution of thermogenic CH4 to the sampled sediment gas from the Blake Ridge. The isotopic values of CO2 (d13C range -20.6 per mil to +1.24 per mil PDB) and dissolved inorganic carbon (DIC; d13C range -37.7 per mil to +10.8 per mil PDB) have parallel profiles with depth, but with an offset of 12.5 per mil. Distinct downhole variations in the carbon isotopic composition of CH4 and CO2 cannot be explained by closed-system fractionation where the CO2 is solely derived from the locally available sedimentary organic matter (d13C -2.0 per mil ± 1.4 per mil PDB) and the CH4 is derived from CO2 reduction. The observed isotopic profiles reflect the combined effects of upwards gas migration and decreased microbial activity with depth.
Resumo:
Since being first discovered in the Blake-Bahama region of the west Atlantic in the 1970s (Hollister, Ewing, et al., 1972, doi:10.2973/dsdp.proc.11.1972), submarine gas hydrates have been identified in the continental margin worldwide. Ocean Drilling Program (ODP) Leg 164 was the first drilling designated to study the occurrence and distribution of natural gas hydrates in Blake Ridge where a well developed, distinct BSR (Bottom Simulating Reflector) has been identified (Paull, Matsumoto, Wallace, et al., 1996, doi:10.2973/odp.proc.ir.164.1996). It has been reported there is a prominent discrepancy between the BSR and the base of gas hydrate stability (Paull, Matsumoto, Wallace, et al., 1996, doi:10.2973/odp.proc.ir.164.1996; Ruppel, 1997, doi:10.1130/0091-7613(1997)025<0699:ACTOAT>2.3.CO;2), though theoretically they should be at the same depth. Natural gas hydrate in marine sediments coexists with sediment particles, so detailed delineation of sediment geochemistry will be of benefit to solve this apparent discrepancy. The main objectives of this study are to supply background data of the major chemical compositions of sediments from a hydrated sediment section.
Resumo:
Anaerobic methane oxidation (AMO) was characterized in sediment cores from the Blake Ridge collected during Ocean Drilling Program (ODP) Leg 164. Three independent lines of evidence support the occurrence and scale of AMO at Sites 994 and 995. First, concentration depth profiles of methane from Hole 995B exhibit a region of upward concavity suggestive of methane consumption. Diagenetic modeling of the concentration profile indicates a 1.85-m-thick zone of AMO centered at 21.22 mbsf, with a peak rate of 12.4 nM/d. Second, subsurface maxima in tracer-based sulfate reduction rates from Holes 994B and 995B were observed at depths that coincide with the model-predicted AMO zone. The subsurface zone of sulfate reduction was 2 m thick and had a depth integrated rate that compared favorably to that of AMO (1.3 vs. 1.1 nmol/cm**2/d, respectively). These features suggest close coupling of AMO and sulfate reduction in the Blake Ridge sediments. Third, measured d13CH4 values are lightest at the point of peak model-predicted methane oxidation and become increasingly 13C-enriched with decreasing sediment depth, consistent with kinetic isotope fractionation during bacterially mediated methane oxidation. The isotopic data predict a somewhat (60 cm) shallower maximum depth of methane oxidation than do the model and sulfate reduction data.