989 resultados para 14C-paraquat
Resumo:
In climate research the interest on carbonaceous particles has increased over the last years because of their influence on the radiation balance of the earth. Nevertheless, there is a paucity of available data regarding their concentrations and sources in the past. Such data would be important for a better understanding of their effects and for estimating their influence on future climate. Here, a technique is described to extract carbonaceous particles from ice core samples with subsequent separation of the two main constituents into organic carbon (OC) and elemental carbon (EC) for analysis of their concentrations in the past. This is combined with further analysis of OC and EC 14C/12C ratios by accelerator mass spectrometry (AMS), what can be used for source apportionment studies of past emissions. We further present how 14C analysis of the OC fraction could be used in the future to date any ice core extracted from a high-elevation glacier. Described sample preparation steps to final analysis include the combustion of micrograms of water–insoluble carbonaceous particles, primary collected by filtration of melted ice samples, the graphitisation of the obtained CO2 to solid AMS target material and final AMS measurements. Possible fractionation processes were investigated for quality assurance. Procedural blanks were reproducible and resulted in carbon masses of 1.3 ± 0.6 μg OC and 0.3 ± 0.1 μg EC per filter. The determined fraction of modern carbon (fM) for the OC blank was 0.61 ± 0.13. The analysis of processed IAEA-C6 and IAEA-C7 reference material resulted in fM = 1.521 ± 0.011 and δ13C = −10.85 ± 0.19‰, and fM = 0.505 ± 0.011 and δ13C = −14.21 ± 0.19‰, respectively, in agreement with consensus values. Initial carbon contents were thereby recovered with an average yield of 93%.
Resumo:
The reasons for the development and collapse of Maya civilization remain controversial and historical events carved on stone monuments throughout this region provide a remarkable source of data about the rise and fall of these complex polities. Use of these records depends on correlating the Maya and European calendars so that they can be compared with climate and environmental datasets. Correlation constants can vary up to 1000 years and remain controversial. We report a series of high-resolution AMS C-14 dates on a wooden lintel collected from the Classic Period city of Tikal bearing Maya calendar dates. The radiocarbon dates were calibrated using a Bayesian statistical model and indicate that the dates were carved on the lintel between AD 658-696. This strongly supports the Goodman-Martinez-Thompson (GMT) correlation and the hypothesis that climate change played an important role in the development and demise of this complex civilization.
Resumo:
The decomposition of soil organic matter (SOM) is temperature dependent, but its response to a future warmer climate remains equivocal. Enhanced rates of decomposition of SOM under increased global temperatures might cause higher CO2 emissions to the atmosphere, and could therefore constitute a strong positive feedback. The magnitude of this feedback however remains poorly understood, primarily because of the difficulty in quantifying the temperature sensitivity of stored, recalcitrant carbon that comprises the bulk (>90%) of SOM in most soils. In this study we investigated the effects of climatic conditions on soil carbon dynamics using the attenuation of the 14C ‘bomb’ pulse as recorded in selected modern European speleothems. These new data were combined with published results to further examine soil carbon dynamics, and to explore the sensitivity of labile and recalcitrant organic matter decomposition to different climatic conditions. Temporal changes in 14C activity inferred from each speleothem was modelled using a three pool soil carbon inverse model (applying a Monte Carlo method) to constrain soil carbon turnover rates at each site. Speleothems from sites that are characterised by semi-arid conditions, sparse vegetation, thin soil cover and high mean annual air temperatures (MAATs), exhibit weak attenuation of atmospheric 14C ‘bomb’ peak (a low damping effect, D in the range: 55–77%) and low modelled mean respired carbon ages (MRCA), indicating that decomposition is dominated by young, recently fixed soil carbon. By contrast, humid and high MAAT sites that are characterised by a thick soil cover and dense, well developed vegetation, display the highest damping effect (D = c. 90%), and the highest MRCA values (in the range from 350 ± 126 years to 571 ± 128 years). This suggests that carbon incorporated into these stalagmites originates predominantly from decomposition of old, recalcitrant organic matter. SOM turnover rates cannot be ascribed to a single climate variable, e.g. (MAAT) but instead reflect a complex interplay of climate (e.g. MAAT and moisture budget) and vegetation development.