923 resultados para 130208 Mathematics and Numeracy Curriculum and Pedagogy
Resumo:
The Thailand education reform adopted cooperative learning to improve the quality of education. However, it has been reported that the introduction and maintenance of cooperative learning has been difficult and uncertain because of the cultural differences. The study proposed a conceptual framework developed based on making a connection between Thai cultures and cooperative learning elements, and implemented a small-scale research project in a Thai primary mathematics class with a teacher and thirty-two Grade 4 students. The results uncovered that the three components including preparation of teachers, instructional strategies and preparation of students can be vehicles for the culture integration in cooperative learning.
Resumo:
ORIGO Stepping Stones is written and developed by a team of experts to provide teachers with a world-class elementary math program. Our expert team of authors and consultants are utilizing all available educational research to create a unique program that has never before been available to teachers. The full color Student Practice Book provides practice pages that support previous and current lessons.
Resumo:
Australian Indigenous students' mathematics performance continues to be below that of non-Indigenous students. This occurs from the early years of school, due largely to knowledge and social differences on entry to formal schooling. This paper reports on a mathematics research project conducted in one Aboriginal community school in New South Wales, Australia. The project aimed to identify and explain the ways that young Australian Indigenous students (age 2-4 years) learn number language and processes, specifically attribute language, sorting, 1-1 correspondence and, counting. The project adopted a mixed methods approach. That is, the methodology was decolonising (Smith 1999) in that it collaborated with and gave benefit back to the Indigenous community and school being researched. It was qualitative and interpretative (Burns 2000) and incorporated an action-research teaching-experiment approach where and teachers collaborated with the researchers to try new teaching methods. This paper draws on data pertaining to students' response to diagnostic interview questions, the pre- and post-test results of the interview and photographic evidence as observations during mathematics learning time. Participants referred to in this paper include one female principal (N = 1), and the transition class of students' pre- (N = 6) and post-test (N = 3) results of the pre-foundational processes (also referred to as attributes). The results were encouraging with improvements in colour (34%), patterns (33%); capacity (38%). As a result of this project, our epistemology regarding the importance of finding out about students' pre-foundational knowledge and understandings and providing a culturally appropriate learning environment with resources has been built upon.
Resumo:
Unfortunately, in Australia there is a prevalence of mathematically underperforming junior-secondary students in low-socioeconomic status schools. This requires targeted intervention to develop the affected students’ requisite understanding in preparation for post-compulsory study and employment and, ultimately, to increase their life chances. To address this, the ongoing action research project presented in this paper is developing a curriculum of accelerated learning, informed by a lineage of cognitivist-based structural sequence theory building activity (e.g., Cooper & Warren, 2011). The project’s conceptual framework features three pillars: the vertically structured sequencing of concepts; pedagogy grounded in students’ reality and culture; and professional learning to support teachers’ implementation of the curriculum (Cooper, Nutchey, & Grant, 2013). Quantitative and qualitative data informs the ongoing refinement of the theory, the curriculum, and the teacher support.
Resumo:
Contemporary higher education institutions are making significant efforts to develop cohesive, meaningful and effective learning experiences for Science, Technology, Engineering and Mathematics (STEM) curricula to prepare graduates for challenges in the modern knowledge economy, thus enhancing their employability (Carnevale et al, 2011). This can inspire innovative redesign of learning experiences embedded in technology-enhanced educational environments and the development of research-informed, pedagogically reliable strategies fostering interactions between various agents of the learning-teaching process. This paper reports on the results of a project aimed at enhancing students’ learning experiences by redesigning a large, first year mathematics unit for Engineering students at a large metropolitan public university. Within the project, the current study investigates the effectiveness of selected, technology-mediated pedagogical approaches used over three semesters. Grounded in user-centred instructional design, the pedagogical approaches explored the opportunities for learning created by designing an environment containing technological, social and educational affordances. A qualitative analysis of mixed-type questionnaires distributed to students indicated important inter-relations between participants’ frames of references of the learning-teaching process and stressed the importance (and difficulty) of creating appropriate functional context. Conclusions drawn from this study may inform instructional design for blended delivery of STEM-focused programs that endeavor to enhance students’ employability by educating work-ready graduates.
Resumo:
Handbooks serve an important function for our research community in providing state-of-the-art summations, critiques, and extensions of existing trends in research. In the intervening years between the second and third editions of the Handbook of International Research in Mathematics Education, there have been stimulating developments in research, as well as new challenges in translating outcomes into practice. This third edition incorporates a number of new chapters representing areas of growth and challenge, in addition to substantially updated chapters from the second edition. As such, the Handbook addresses five core themes, namely, Priorities in International Mathematics Education Research, Democratic Access to Mathematics Learning, Transformations in Learning Contexts, Advances in Research Methodologies, and Influences of Advanced Technologies...
Resumo:
We discuss three approaches to the use of technology as a teaching and learning tool that we are currently implementing for a target group of about one hundred second level engineering mathematics students. Central to these approaches is the underlying theme of motivating relatively poorly motivated students to learn, with the aim of improving learning outcomes. The approaches to be discussed have been used to replace, in part, more traditional mathematics tutorial sessions and lecture presentations. In brief, the first approach involves the application of constructivist thinking in the tertiary education arena, using technology as a computational and visual tool to create motivational knowledge conflicts or crises. The central idea is to model a realistic process of how scientific theory is actually developed, as proposed by Kuhn (1962), in contrast to more standard lecture and tutorial presentations. The second approach involves replacing procedural or algorithmic pencil-and-paper skills-consolidation exercises by software based tasks. Finally, the third approach aims at creating opportunities for higher order thinking via "on-line" exploratory or discovery mode tasks. The latter incorporates the incubation period method, as originally discussed by Rubinstein (1975) and others.
Resumo:
Mode of access: Internet.