989 resultados para 123-765C
Resumo:
Bentonites (i.e., smectite-dominated, altered volcanic ash layers) were recovered in Berriasian to Valanginian hemipelagic sediments of the Wombat Plateau (Site 761) and southern Exmouth Plateau (Site 763). They are compared to coeval bentonites in eupelagic sediments of the adjacent Argo Abyssal Plain (Sites 261 and 765) and Gascoyne Abyssal Plain (Site 766). A volcaniclastic origin with dacitic to rhyolitic ash as parent material is suggested by the abundance of well-ordered montmorillonite, fresh to altered silicic glass shards, volcanogenic minerals (euhedral sanidine, apatite, and long-prismatic zircon), and volcanic rock fragments, and by a vitroclastic ultrafabric (smectitized glass shards). We distinguish (1) pure smectite bentonites with a white, pink, or light gray color, a waxy appearance, and a very homogeneous, cryptocrystalline smectite matrix (water-free composition at Site 761: 68.5% SiO2, 0.27% TiO2, 19.1% Al2O3, 3.3% Fe2O3, 0.4%-1.1% Na2O, and 0.6% K2O) and (2) impure bentonitic claystones containing mixtures of volcanogenic smectite and pyroclastic grains with terrigenous and pelagic components. The ash layers were progressively altered during diagenesis. Silicic glass was first hydrated, then slightly altered (etched with incipient smectite authigenesis), then moderately smectitized (with shard shape still intact), and finally completely homogenized to a pure smectite matrix without obvious relict structures. Euhedral clinoptilolite is the latest pore-filling or glass-replacing mineral, postdating smectite authigenesis. Volcanic activity was associated with continental breakup and rapid subsidence during the "juvenile ocean phase." Potential source areas for a Neocomian post-breakup volcanism include the Wombat Plateau, Joey and Roo rises, Scott Plateau, and Wallaby Plateau/Cape Range Fracture Zone. Westward-directed trade winds transported silicic ash from these volcanic source areas to the Exmouth Plateau into the adjacent abyssal plains. The Wombat Plateau bentonites are interpreted as proximal ash turbidites.
Resumo:
The microstructure of YBa2Cu3O7-delta (Y-123) materials partially-melted in air and quenched from the temperature range 900-1100 degrees C, has been characterized using a combination of X-ray diffractometry, optical microscopy, scanning electron microscopy, electron microprobe analyses, transmission electron microscopy and energy and wave dispersive X-ray spectrometries. The microstructural studies reveal significant changes in the character of the quenched partial-melt as a function of temperature and time before quenching. BaCu2O2 and BaCuO2 are found to co-exist in stoichiometric samples quenched from the temperature range 920-960 degrees C. Under suitable cooling conditions, large pockets of melt cristallize as BaCuO2 with an exsolution of BaCu2O2 in the form of thin plates (approximate to 50-100 nm thick) along facets. Y2BaCuO5 (Y-211) additions are associated with the formation of BaCu2O2 at 1100 degrees C. Preliminary results on the effects of PtO2 and CeO2 additions to Y-123 (and Y-123 with Y-211 additions) show that these enhace the formation of BaCu2O2 at the melting temperature of 1100 degrees C. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
A fully automated, versatile Temperature Programmed Desorption (TDP), Temperature Programmed Reaction (TPR) and Evolved Gas Analysis (EGA) system has been designed and fabricated. The system consists of a micro-reactor which can be evacuated to 10−6 torr and can be heated from 30 to 750°C at a rate of 5 to 30°C per minute. The gas evolved from the reactor is analysed by a quadrupole mass spectrometer (1–300 amu). Data on each of the mass scans and the temperature at a given time are acquired by a PC/AT system to generate thermograms. The functioning of the system is exemplified by the temperature programmed desorption (TPD) of oxygen from YBa2Cu3−xCoxO7 ± δ, catalytic ammonia oxidation to NO over YBa2Cu3O7−δ and anaerobic oxidation of methanol to CO2, CO and H2O over YBa2Cu3O7−δ (Y123) and PrBa2Cu3O7−δ (Pr123) systems.
Resumo:
The chemical modifications of structure, reactivity and catalytic properties of layered triple perovskite oxides, related to the YBa2Cu3O7-delta (123) system, have been briefly reviewed. These oxides form a versatile family of materials with wide-ranging chemical and physical properties. The multiple sites available for chemical doping, and the ability to reversibly intercalate oxygen at the defect sites have rendered these oxides important model systems in the area of oxide catalysis. An attempt has been made to comprehend the hitherto known catalytic reactions and correlate them to various factors like structure, oxygen diffusional limitations, different geometries adopted by various substituents, oxidative non-stoichiometry and activation energy for oxygen desorption. In particular, results on the enhanced catalytic activity of cobalt-substituted 123 oxide systems towards the selective catalytic oxidation of ammonia to nitric oxide and carbon monoxide to carbon dioxide are presented.
Resumo:
Partial substitution of Cu in the chain by the phosphate ion stabilizes LnSr(2)Cu(3)O(7) (Ln = Gd, Dy or Ho) in the 123 structure. The LnSr(2)Cu(2.8)(PO4)(0.2)O-y derivatives exhibit incommensurately modulated structures. The holmium oxy-phosphate derivative has been rendered superconducting by the partial substitution of Ho by Ca.
Resumo:
The microwave performance of an Ag-doped YBa2Cu3O7-x, thin-film X-band microstrip resonator on unbuffered sapphire substrate is reported. Q-values of 2400 and 1200 have been obtained al 15R and 77K, respectively, which correspond to R(s) values of 330 mu Omega and 680 mu Omega.
Resumo:
Contenido: La unidad de la conciencia / Octavio N. Derisi – Aproximaciones críticas a la “Historia del pensamiento filosófico argentino” de Diego F. Pró / Alberto Caturelli – El conocimiento humano en Santo Tomás de Aquino / Ricardo Marimón Batlló – Filosofía del desarrollo / Octavio N. Derisi – Notas y comentarios -- Bibliografía
Resumo:
There is, in nature, as well as in the aquarium, a parasitic disease known as 'mousse' and which attacks predominantly fish. It is caused by Phycomycete fungi, genus Saprolegnia. The fungus causes external lesions and covers the fish with a thick white layer from whence comes the name 'mousse', commonly attributed to the disease, for which the scientific name is Saprolegnia. This article provides an overview of Saprolegnia infections on fish in nature and aquaria and then discusses symptomology of Saprolegnia in the mirror caro and t roach in more detail.