991 resultados para 113-692A
Resumo:
Palynological studies were carried out on Paleogene sections from Sites 693 and 696 of Ocean Drilling Project Leg 113 in the Weddell Sea region. Dinoflagellate cysts and sporomorphs were recovered at Site 696 (61°S, 42°W) indicating a middle Eocene to late Eocene/earliest Oligocene age for a glauconitic silt/sandstone. At Site 693 (70°S, 14°W) early Oligocene siliciclastic mud contains a low diversity palynoflora. In an upper Oligocene section (Site 693) only rare, reworked Mesozoic palynomorphs were encountered. Palynological data from Kerogen analyses, dinocysts, and sporomorphs are used to reconstruct the climatic change on the South Orkney microcontinent from the middle Eocene to the late Eocene/earliest Oligocene at Site 696 and the late early Oligocene/early late Oligocene time interval at Site 693 near the continental margin. The middle Eocene was a warm period in the Orkney region with good growing conditions for a warm temperate Nothofagus/conifer forest with an admixture of Proteaceae. Temperate surface water masses, which allowed the growth of a reasonably diverse dinocyst assemblage (ca. 15-20 species), persisted until the end of the Eocene at Site 696. Late early Oligocene sediments of Site 693 (Antarctic continental margin) contain only a low diversity dinocyst flora (two species). The major Cenozoic cooling event in the Weddell Sea region probably occurred at the Eocene/Oligocene boundary. A second dramatic climatic deterioration seems to have taken place during the late early/early late Oligocene, when dinocysts disappeared at the Dronning Maud Land margin area.
Resumo:
Basalts from Maud Rise, Weddell Sea, are vesicular and olivine-phyric. Major, trace, and rare earth element concentrations are similar to those of alkali basalts from ocean islands and seamounts. The rocks are low in MgO, Cr, Ni, and Sc, and high in TiO2, K2O, P2O5, Zr, and LREE contents. The abundance of "primary" biotite and apatite in the matrix indicates the melting of a hydrous mantle. Prevalence of olivine and absence of plagioclase in the rocks suggests that the volatile in the melt was an H2O-CO2 mixture, where H2O was <0.5. Mantle derived xenocrysts in the basalt include corroded orthopyroxene, chromite, apatite, and olivine. Olivine (Fo90) is too magnesian to be in equilibrium with the basalts, as they contain only 5-6 wt% MgO. Based on the presence of mantle xenocrysts, the high concentration of incompatible elements, the spatial and chemical affinity with other ocean island basalts from the area, and the relative age of the basalt (overlain by late Campanian sediments), it is suggested that Maud Rise was probably generated by hot-spot activity, possible during a ridge crest jump prior to 84 Ma (anomaly 34 time). Iddingsite, a complex intergrowth of montmorillonite and goethite, is the major alteration product of second generation olivine. It is suggested that iddingsite crystallized at low temperatures (<200°C) from an oxidized fluid during deuteric alteration. Vesicles are commonly filled by zeolites which have been replaced by K-feldspars.
Resumo:
Long sequences of Upper Cretaceous through Quaternary sediments rich in calcareous and siliceous microfossils were recovered at Ocean Drilling Program Sites 689 and 690 on Maud Rise off East Antarctica. These sites have become the southernmost anchor in the Atlantic Basin for bio-, magneto-, chemostratigraphic, and paleobiogeographic studies. ODP Sites 692 and 693 on the Weddell Sea margin of East Antarctica and Site 696 on the South Orkney microcontinent of West Antarctica yielded calcareous nannofossils within some stratigraphic intervals. Sites 691, 692, 694, 695, and 697 did not recover Cenozoic calcareous nannofossils. Calcareous nannofossil biostratigraphy suggests a major hiatus across the Paleogene/Neogene boundary at Sites 689 and 690, and two additional hiatuses in the middle Eocene-lower Oligocene section at Site 690. Correlation with magnetostratigraphy reveals: the last occurrence (LO) of Reticulofenestra umbilica at Maud Rise is over 1 m.y. younger than that at the middle-latitude sites; the LO of Isthmolithus recurvus is synchronous in the middle-latitude and high-latitude areas (about 34.8 Ma); Reticulofenestra oamaruensis ranges from 38.0 to 36.0 Ma at Maud Rise; Reticulofenestra reticulata has a shorter range at Maud Rise (42.1 to 38.9 Ma) than at the middle-latitude DSDP Site 516; the range of Chiasmolithus oamaruensis is diachronous over different latitudes; and the LO of Chiasmolithus solitus is a good datum at 41.3 Ma from 30°S to 65°S in the South Atlantic Ocean. Comparison of calcareous nannofossil abundances in a latitudinal transect shows: Reticulofenestra bisecta is a temperate-water species and its LO, which crosses below that of Chiasmolithus altus at Maud Rise, is not applicable for the Paleogene/Neogene boundary in high southern latitude areas; Clausicoccus fenestratus is rare or absent at Maud Rise and can not be used as a marker; Coccolithus formosus is a warm-water species which disappeared earlier toward higher latitudes. Calcareous nannofossil assemblages indicate that by at least the middle Eocene, surface water temperatures became considerably lower in the high southern latitudes than in the middle-latitude areas and that there have been more extreme cold events in the high latitudes during the Neogene. Bicolumnus ovatus n. gen., n. sp. is proposed in this paper.
Resumo:
Fluctuations in oxygen (d18O) and carbon (d13C) isotope values of benthic foraminiferal calcite from the tropical Pacific and Southern Oceans indicate rapid reversals in the dominant mode and direction of the thermohaline circulation during a 1 m.y. interval (71-70 Ma) in the Maastrichtian. At the onset of this change, benthic foraminiferal d18O values increased and were highest in low-latitude Pacific Ocean waters, whereas benthic and planktic foraminiferal d13C values decreased and benthic values were lowest in the Southern Ocean. Subsequently, benthic foraminiferal d18O values in the Indo-Pacific decreased, and benthic and planktic d13C values increased globally. These isotopic patterns suggest that cool intermediate-depth waters, derived from high-latitude regions, penetrated temporarily to the tropics. The low benthic d13C values at the Southern Ocean sites, however, suggest that these cool waters may have been derived from high northern rather than high southern latitudes. Correlation with eustatic sea-level curves suggests that sea-level change was the most likely mechanism to change the circulation and/or source(s) of intermediate-depth waters. We thus propose that oceanic circulation during the latest Cretaceous was vigorous and that competing sources of intermediate- and deep-water formation, linked to changes in climate and sea level, may have alternated in importance.