979 resultados para 109-648
Resumo:
Two types of serpentinized peridotites from Hole 670A of Leg 109 were studied in detail. A small piece of relatively unaltered sample, 109-670A-9R-1, #3 (22-24 cm), is olivine websterite characterized by aluminous chromian spinel with Cr/(Cr + Al) ratio of about 0.2. The other minerals have compositions essentially identical with those in more commonly observed serpentinized harzburgite like 109-670A-9R-01, #12 (94-97 cm). The occurrence of pyroxene-rich peridotite with normal harzburgite suggests that small scale heterogeneity in modal compositions exists in the upper mantle beneath the Mid-Atlantic Ridge. Low Cr/Al ratios of spinel and pyroxenes of those peridotites indicate that they are relatively less refractory among peridotites ever recovered from the oceanic region. Textures and the estimated equilibration temperatures indicate that peridotites recovered from Hole 670A are recrystallized and reequilibrated at subsolidus temperature. The occurrence of serpentinized peridotites from the rift valley of the active mid-oceanic ridge may suggest that they represent direct exposure of upwelling mantle materials rather than serpentine diapirs.
Resumo:
The magnetic properties of 11 samples from Site 670 of Leg 109, 3 harzburgites and 8 highly serpentinized peridotites, have been studied. Reflected light microscopy and Curie temperatures confirm that magnetite is the dominant magnetic mineral in all samples. However, both rock types show different magnetic behavior. Susceptibility, saturation magnetization, and NRM are higher for the serpentinites, because of the higher magnetite content. The hysteresis parameters indicate magnetite particles with pseudosingle domain structure for both rock types. For the remarkable anisotropy of the magnetic susceptibility no definite explanation could be found, because of the complex texture of the samples. In both rock types the presence of maghemite, a product of low temperature oxidation of magnetite, has been indicated by reflected light microscopy and by thermomagnetic analysis. As the maghemite converts to hematite at temperatures above 350°C, the temperature during the serpentinization was below this value assuming that the maghemitization took place at the same time.