937 resultados para 1-MATRIX METALLOPROTEINASE
Resumo:
The initial events in prostatic morphogenesis involve cell proliferation, epithelial canalization and outgrowth toward the stroma. We have hypothesized that stromal rearrangement takes place at the sites of epithelial growth and branching and that this rearrangement involves the action of gelatinases matrix metalloproteinase (MMP)-2 and MMP-9. Thus, the purpose of the present study was to characterize structural aspects of epithelial growth during the first week of postnatal development of the rat ventral prostate and to investigate the expression, localization and activity of MMP-2 and MMP-9 during this period by histological, ultrastructural and immunocytochemical analysis, in addition to gel zymography, in situ zymography and Western blotting. An increasing complexity of prostatic architeture was observed within the first postnatal week. Concurrently, the stroma became more organized and some cells differentiated into smooth muscle cells. Reticulin fibers appeared in a basket-like arrangement around both growing tips and epithelial sprouts, associated with a fainter staining for laminin. MMP-2 and MMP-9 activities were detected. MMP-2/MMP-9 expression decreased during the first week. Developing epithelial cords showed strong and difuse gelatinolytic activity. This activity coincided with the distribution of MMP-2 as determined by immunocytochemistry. on the other hand, MMP-9 was rather concentrated at the epithelial tips. These results suggest that gelatinolytic activity (with contribution of both MMP-2 and MMP-9) in the epithelium and at the epithelium-stroma interface are at least in part responsible for the tissue remodeling that allows epithelial growth and its projection into the surrounding stroma.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Extracellular matrix metalloproteinase inducer (EMMPRIN) or CD 147 is a transmembrane glycoprotein expressed by various cell types, including oral epithelial cells. Recent studies have brought evidence that EMMPRIN plays a role in periodontitis. In the present study, we investigated the effect of Porphyromonas gingivalis, a major pathogen in chronic periodontitis, on the shedding of membrane-anchored EMMPRIN and on the expression of the EMMPRIN gene by oral epithelial cells. A potential contribution of shed EMMPRIN to the inflammatory process of periodontitis was analyzed by evaluating the effect of recombinant EMMPRIN on cytokine and matrix metalloproteinase (MMP) secretion by human gingival fibroblasts. ELISA and immunofluorescence analyses revealed that P. gingivalis mediated the shedding of epithelial cell-surface EMMPRIN in a dose- and time-dependent manner. Cysteine proteinase (gingipain)-deficient P. gingivalis mutants were used to demonstrate that both Arg- and Lys-gingipain activities are involved in EMMPRIN shedding. Real-time PCR showed that P. gingivalis had no significant effect on the expression of the EMMPRIN gene in epithelial cells. Recombinant EMMPRIN induced the secretion of IL-6 and MMP-3 by gingival fibroblasts, a phenomenon that appears to involve mitogen activated protein kinases. The present study brought to light a new mechanism by which P. gingivalis can promote the inflammatory response during periodontitis. (C) 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
During the fish reproductive cycle, testes undergo morphological changes related to germinal epithelium and remodeling of extracellular matrix components (ECM). ECM is degraded mainly by action of matrix metalloproteinases (MMPs). Due to the natural renewal of ECM in fish testes, we choose Pimelodus maculatus to study remodeling of ECM throughout reproductive cycle, using picrosirius (to identify type I, II, III collagen) and reticulin (type III collagen), and to immunolocalize MT1-MMP (membrane type 1-matrix metalloproteinase) and MMP-2 in testis cells. Testes were classified in four reproductive phases: regenerating, development, spawning capable and regressing. Picrosirius and reticulin demonstrated a differential distribution of total collagen fibers during the reproductive cycle. Immunohistochemistry showed MT1-MMP only in acidophilic granulocyte cells mainly inside blood vessels, in connective tissue of capsule close to the germinal compartment, and also infiltrated in interstitial connective tissue. MMP-2 was detected in fibroblast and endothelial cells of interstitial and capsule blood vessels, in epithelial cells of capsule, and in acidophilic granulocyte cells at same description for MT1-MMP. The fish testes ECM were remodeled throughout reproductive cycle in according to morphophysiological alterations. During reproductive season (spawning capable), the interstitium increased in total collagen fibers (type I, II, III). After spermiation period (regression and regenerating), the amount of collagen fibers decreased in response to action of MMPs on collagen degradation and other interstitial components (not assessed in this study). MMPs seem to be indispensable components for natural cyclic events of ECM remodeling of fish testes and for guarantee tissue homeostasis throughout reproductive cycle.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Since oral squamous cell carcinoma (OSCC) is the most prevalent malignant cancer in the oral cavity, several researches have been performed to study the role of important enzymes in this disease. Among them, the matrix metalloproteinases (MMPs) are highlighted, due to the fact that they are proteinases responsible to degrade many extra-cellular matrix components, making possible the invasion of neoplasic cells. Important tools in cancer prognosis have been utilized aiming to correlate high levels of MMPs and OSCC, such as immunohistochemical, zymographic and mRNA detection methods. However, these techniques are usually applied after cancer detection, characterizing a curative but not a preventive medicine. Trying to make interventions before the development of the disease and making possible the identification of people at high risk and, analysis of modifications in MMP genes has been a chance for modern medicine. Recently, polymorphisms in MMP genes have been related to different neoplasias, including OSCC. Despite investigation is beginning, MMP gene polymorphisms seems to have a promising future in oral cancer research and some of the present results have shown that there are MMP polymorphisms related to an increased risk for developing oral cancer. Key words:Oral cancer, polymorphism, matrix metalloproteinase.
Resumo:
Background: Prognosis of prostate cancer (PCa) is based mainly in histological aspects together with PSA serum levels that not always reflect the real aggressive potential of the neoplasia. The micro RNA (miRNA) mir-21 has been shown to regulate invasiveness in cancer through translational repression of the Metaloproteinase (MMP) inhibitor RECK. Our aim is to investigate the levels of expression of RECK and miR-21 in PCa comparing with classical prognostic factors and disease outcome and also test if RECK is a target of miR-21 in in vitro study using PCa cell line. Materials and methods: To determine if RECK is a target of miR-21 in prostate cancer we performed an in vitro assay with PCa cell line DU-145 transfected with pre-miR-21 and anti-miR-21. To determine miR-21 and RECK expression levels in PCa samples we performed quantitative real-time polymerase chain reaction (qRT-PCR). Results: The in vitro assays showed a decrease in expression levels of RECK after transfection with pre-miR-21, and an increase of MMP9 that is regulated by RECK compared to PCa cells treated with anti-miR-21. We defined three profiles to compare the prognostic factors. The first was characterized by miR-21 and RECK underexpression (N = 25) the second was characterized by miR-21 overexpression and RECK underexpression (N = 12), and the third was characterized by miR-21 underexpression and RECK overexpression (N = 16). From men who presented the second profile (miR-21 overexpression and RECK underexpression) 91.7% were staged pT3. For the other two groups 48.0%, and 46.7% of patients were staged pT3 (p = 0.025). Conclusions: Our results demonstrate RECK as a target of miR-21. We believe that miR-21 may be important in PCa progression through its regulation of RECK, a known regulator of tumor cell invasion.
Resumo:
Deficient formation of endogenous nitric oxide (NO) contributes to cardiovascular diseases, and this may be associated with increased circulating levels of matrix metalloproteinase-9 (MMP-9), as previously shown in white subjects. Because interethnic differences exist with respect to risk factors, prevalence, and severity of cardiovascular diseases, we designed this study to examine whether the circulating levels of nitrites (a marker of endogenous NO formation) are associated with the plasma levels of MMP-9 and MMP-2 in healthy black subjects. We studied 198 healthy subjects self-reported as blacks not taking any medications. Venous blood samples were collected and plasma and whole blood nitrite levels were measured using an ozone-based chemiluminescence assay. Plasma MMP-2 and MMP-9 levels were determined by gelatin zymography. We found a positive correlation between plasma MMP-9 and MMP-2 levels (P < 0.0001, rs = 0.556). Interestingly, we found a negative relationship between the plasma MMP-9 levels and the plasma or whole blood nitrites levels (P = 0.04, rs = -0.149; and P < 0.0001, rs = -0.349, respectively). In parallel, we found similar negative relationships between plasma MMP-2 levels and plasma or whole blood nitrites levels (P = 0.02, rs = -0.172; and P < 0.0001, rs = -0.454, respectively). This is the first study to show that endogenous nitric oxide formation correlates negatively with the circulating levels of both MMP-2 and MMP-9 in black subjects. Our findings suggest a mechanistic link between deficient NO formation and increased MMPs levels, which may promote cardiovascular diseases.
Resumo:
We examined whether two functional polymorphisms (g.-1306 C> T and g.-735 C>T) in matrix metalloproteinase (MMP)-2 gene are associated with preeclampsia (PE) or gestational hypertension (GH), and whether they modify MMP-2 or tissue inhibitor of metalloproteinase (TIMP)-2 plasma concentrations in these hypertensive disorders of pregnancy. We studied 130 healthy pregnant (HP), 130 pregnant with GH, and 133 pregnant with PE. Genomic DNA was extracted from whole blood and genotypes for g.-1306 C>T and g.-735 C>T polymorphisms were determined by Real Time-PCR, using Taqman allele discrimination assays. Haplotypes were inferred using the PHASE program. Plasma MMP-2 and TIMP-2 concentrations were measured by ELISA. The main findings were that pregnant with PE have higher plasma MMP-2 and TIMP-2 concentrations than HP (P<0.05), although the MMP-2/TIMP-2 ratios were similar (P>0.05). Moreover, pregnant with GH have elevated plasma MMP-2 levels and MMP-2/TIMP-2 ratios compared to HP (P<0.05). While MMP-2 genotypes and haplotypes are not linked with hypertensive disorders of pregnancy, MMP-2 genotypes and haplotypes are associated with significant alterations in plasma MMP-2 and TIMP-2 concentrations in preeclampsia (P<0.05). Our findings may help to understand the relevance of MMP-2 and its genetic polymorphisms to the pathophysiology of hypertensive disorders of pregnancy. It is possible that patients with PE and the MMP-2 haplotype combining the C and T alleles for the g.-1306 C>T and g.-735 C>T polymorphisms may benefit from the use of MMPs inhibitors such as doxycycline. However, this possibility remains to be determined. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Background: Metastasis is the main factor responsible for death in breast cancer patients. Matrix metalloproteinases (MMPs) and their inhibitors, known as tissue inhibitors of MMPs (TIMPs), and the membrane-associated MMP inhibitor (RECK), are essential for the metastatic process. We have previously shown a positive correlation between MMPs and their inhibitors expression during breast cancer progression; however, the molecular mechanisms underlying this coordinate regulation remain unknown. In this report, we investigated whether TGF-beta 1 could be a common regulator for MMPs, TIMPs and RECK in human breast cancer cell models. Methods: The mRNA expression levels of TGF-beta isoforms and their receptors were analyzed by qRT-PCR in a panel of five human breast cancer cell lines displaying different degrees of invasiveness and metastatic potential. The highly invasive MDA-MB-231 cell line was treated with different concentrations of recombinant TGF-beta 1 and also with pharmacological inhibitors of p38 MAPK and ERK1/2. The migratory and invasive potential of these treated cells were examined in vitro by transwell assays. Results: In general, TGF-beta 2, T beta RI and T beta RII are over-expressed in more aggressive cells, except for T beta RI, which was also highly expressed in ZR-75-1 cells. In addition, TGF-beta 1-treated MDA-MB-231 cells presented significantly increased mRNA expression of MMP-2, MMP-9, MMP-14, TIMP-2 and RECK. TGF-beta 1 also increased TIMP-2, MMP-2 and MMP-9 protein levels but downregulated RECK expression. Furthermore, we analyzed the involvement of p38 MAPK and ERK1/2, representing two well established Smad-independent pathways, in the proposed mechanism. Inhibition of p38MAPK blocked TGF-beta 1-increased mRNA expression of all MMPs and MMP inhibitors analyzed, and prevented TGF-beta 1 upregulation of TIMP-2 and MMP-2 proteins. Moreover, ERK1/2 inhibition increased RECK and prevented the TGF-beta 1 induction of pro-MMP-9 and TIMP-2 proteins. TGF-beta 1-enhanced migration and invasion capacities were blocked by p38MAPK, ERK1/2 and MMP inhibitors. Conclusion: Altogether, our results support that TGF-beta 1 modulates the mRNA and protein levels of MMPs (MMP-2 and MMP-9) as much as their inhibitors (TIMP-2 and RECK). Therefore, this cytokine plays a crucial role in breast cancer progression by modulating key elements of ECM homeostasis control. Thus, although the complexity of this signaling network, TGF-beta 1 still remains a promising target for breast cancer treatment.
Resumo:
MMP-2 and MMP-14 process extracellular matrix proteins,cytokines, growth factors and adhesion molecules to generatefragments with enhanced or reduced biological activity.In this study, a vectorsystem was developed for theconditional expression of MMP-2 and MMP-14 in the liver oftransgenic mice. For this vectorsystem the murine albuminpromotor was chosen together with the cre/lox system toachieve an inducible MMP-expression in the liver.Only one of the MMP-14 transgenic lines expressed highamounts of active MMP-14 protein after recombination of thelox-P sites. In these mice MMP-14 was able to activate MMP-2and MMP-13 in vivo. However, none of the livers of MMP-14overexpressing mice showed no differences in liverweight,amount of extracellular matrixproteins and rate ofproliferation, apoptosis and tumor-induction when comparedto the liver of wildtype mice.On the other hand overexpression of MMP-2 was embryoniclethal in all MMP-2 transgenic lines. After crossing theMMP-2 transgenic mice with cre deleter mice, a cre mediatedrecombination could be shown at day 6.5 post coitum (pc).Some of the double transgenic embryos of one of thetransgenic lines had severe deformations of the head,especially of the telencephalon and the mesencephalon.It could be shown in this study that disregulation of MMP-2in early embryonic development is lethal but anoverexpression of MMP-14 has no influence on the embryonicdevelopment or the homeostasis of the adult liver.With this conditional vectorsystem it is to possible studythe influnce of MMP-2 and MMP-14 on fibrogenesis,regeneration and tumorgenesis in the liver of mice.
Resumo:
The role of and interaction between bacterial infection and biomechanical impact in the development of peri-implant inflammatory processes is not clear.
Resumo:
AIMS: To evaluate the expression of matrix metalloproteinase-19 (MMP-19) in oropharyngeal squamous cell carcinoma along with its association with structural features of invasiveness. To investigate whether MMP-19 expression correlates with lymphatic or systemic metastasis and prognosis in patients who have received definitive radiotherapy. METHODS AND RESULTS: The histological evaluation of the invasive front was based on Bryne's malignancy grading system. We correlated the immunohistochemical expression pattern with morphological parameters which characterize tumor invasiveness such as keratinization, nuclear polymorphism, invasion pattern, and the host inflammatory response. Local immunoreactivity for MMP-19 was positively correlated with tumor invasiveness as reflected in its structural characteristics and the degree of nuclear polymorphism, and negatively correlated with the inflammatory response of the host. No correlation existed between MMP-19 expression and clinicopathological features (TNM stage, grade of differentiation) or a patient''s outcome and prognosis. CONCLUSIONS: This latter finding probably reflects the unique change for MMPs from high immunoreactivity within healthy tissue areas and non-invasive tumor parts, through absence in the least invasive neoplastic regions, to strong re-expression at a highly invasive front of the same tumor. Our findings indicate that MMP-19 can be used as a marker for tumor invasiveness in patients with oropharyngeal squamous cell carcinoma.