963 resultados para 060803 Animal Developmental and Reproductive Biology
Resumo:
The aim of this work was to gain knowledge about reproductive biology of the crab Armases rubripes (Rathbun, 1897) from an estuarine area of the Sepetiba Bay. Samples were taken monthly from February 2003 to January 2004 in the Sahy River estuary (22º56'S; 44º01'W), Rio de Janeiro, Brazil. The crabs were collected by hand during 15-minute catch-effort sessions conducted by two people. In the laboratory, the specimens were separated by sex, carapace width was measured and gonadal stage was checked macroscopically. A total of 830 individuals were caught - 304 males, 373 females (60 ovigerous females) and 153 juveniles. The ovigerous females were found almost year-round, except in November and April, showing a continuous reproductive period. They presented a size range from 8.2 to 15.0 mm carapace width (12.1 ± 1.7 mm). Color and macroscopical aspects determined five gonadal stages for males and females (immature, rudimentary, intermediary, developed and resting). First sexual maturity was estimated at 6.5 mm of carapace width for males and 8.1 mm for females. Individual fecundity varied from 200 to 11,460 eggs (4,458 ± 2,739 eggs). Mean egg size was 0.248 ± 0.026 mm, varying from 0.213 to 0.333 mm, while the volume ranged from 0.0051 to 0.0188 mm³ (0.0082 ± 0.0029 mm³).
Resumo:
The aim of this study was to characterize, for the central region of the State of Rio Grande do Sul, Brazil, the reproductive biology of Leptodactylus fuscus (Schneider, 1799), based on the analysis of gonadal development of males and females, reproductive effort, size-fecundity relationships, and occurrence of sexual dimorphism in body size. Mature individuals were found from October 1996 to February 1997 and from October 1997 to December 1997. The highest input of juveniles in the population was recorded in March 1997. There was a positive and significant correlation between the number of mature individuals and the mean monthly temperature. The population did not present sexual dimorphism in size. Males presented significant correlation only between snout-vent length and testes length. All females had oocytes at four different maturation stages and there were no significant correlations regarding size-fecundity variables. The correlation between ovarian size factor and females snout-vent length was not significant either. The main difference between this population and those that inhabit tropical climate was that temperature was responsible for stimulating the reproduction activity, instead of rainfall.
Resumo:
Nymphs and adults of Tingis americana Drake, 1922 were found feeding on leaves of Handroanthus heptaphyllus (Vell.) Mattos and Handroanthus chrysotrichus (Mart. ex A. DC.) Mattos in the Botanic Garden, Porto Alegre, state of Rio Grande do Sul, Brazil. This is the first record of T. americana on these host plants and in the southern Brazil. We aimed to compare the nymphal development on both hosts and to analyze the reproductive parameters on H. heptaphyllus (25 ± 1ºC; 60 ± 10% RH; 16 h photophase). The mean nymphal period (days) was shorter in individuals reared on H. heptaphyllus (12.69 ± 0.076) than on H. chrysotrichus (19.11 ± 0.208) (P < 0.0001), however, nymph viability was similar. On H. heptaphyllus, the mean embryonic period lasted 12.32 ± 0.274 days and the egg viability was 92%. The mean total and daily fecundity were 310.0 ± 19.40 eggs/female and 7.46 ± 0.302 eggs/female/day, respectively. Paired males and females showed similar longevity (P = 0.0691), while unpaired females lived longer than unpaired males (P = 0.0460).
Resumo:
The orexigenic neurotransmitter neuropeptide Y (NPY) plays a central role in the hypothalamic control of food intake and energy balance. NPY also exerts an inhibition of the gonadotrope axis that could be important in the response to poor metabolic conditions. In contrast, leptin provides an anorexigenic signal to centrally control the body needs in energy. Moreover, leptin contributes to preserve adequate reproductive functions by stimulating the activity of the gonadotrope axis. It is of interest that hypothalamic NPY represents a primary target of leptin actions. To evaluate the importance of the NPY Y1 and Y5 receptors in the downstream pathways modulated by leptin and controlling energy metabolism as well as the activity of the gonadotrope axis, we studied the effects of leptin administration on food intake and reproductive functions in mice deficient for the expression of either the Y1 or the Y5 receptor. Furthermore, the role of the Y1 receptor in leptin resistance was determined in leptin-deficient ob/ob mice bearing a null mutation in the NPY Y1 locus. Results point to a crucial role for the NPY Y1 receptor in mediating the NPY pathways situated downstream of leptin actions and controlling food intake, the onset of puberty, and the maintenance of reproductive functions.
Resumo:
1. Wind pollination is thought to have evolved in response to selection for mechanisms to promote pollination success, when animal pollinators become scarce or unreliable. We might thus expect wind-pollinated plants to be less prone to pollen limitation than their insect-pollinated counterparts. Yet, if pollen loads on stigmas of wind-pollinated species decline with distance from pollen donors, seed set might nevertheless be pollen-limited in populations of plants that cannot self-fertilize their progeny, but not in self-compatible hermaphroditic populations.2. Here, we test this hypothesis by comparing pollen limitation between dioecious and hermaphroditic (monoecious) populations of the wind-pollinated herb Mercurialis annua.3. In natural populations, seed set was pollen-limited in low-density patches of dioecious, but not hermaphroditic, M. annua, a finding consistent with patterns of distance-dependent seed set by females in an experimental array. Nevertheless, seed set was incomplete in both dioecious and hermaphroditic populations, even at high local densities. Further, both factors limited the seed set of females and hermaphrodites, after we manipulated pollen and resource availability in a common garden experiment.4. Synthesis. Our results are consistent with the idea that pollen limitation plays a role in the evolution of combined vs. separate sexes in M. annua. Taken together, they point to the potential importance of pollen transfer between flowers on the same plant (geitonogamy) by wind as a mechanism of reproductive assurance and to the dual roles played by pollen and resource availability in limiting seed set. Thus, seed set can be pollen-limited in sparse populations of a wind-pollinated species, where mates are rare or absent, having potentially important demographic and evolutionary implications.
Resumo:
Habitat restoration measures may result in artificially high breeding density, for instance when nest-boxes saturate the environment, which can negatively impact species' demography. Potential risks include changes in mating and reproductive behaviour such as increased extra-pair paternity, conspecific brood parasitism, and polygyny. Under particular cicumstances, these mechanisms may disrupt reproduction, with populations dragged into an extinction vortex. With the use of nuclear microsatellite markers, we investigated the occurrence of these potentially negative effects in a recovered population of a rare secondary cavity-nesting farmland bird of Central Europe, the hoopoe (Upupa epops). High intensity farming in the study area has resulted in a total eradication of cavity trees, depriving hoopoes from breeding sites. An intensive nest-box campaign rectified this problem, resulting in a spectacular population recovery within a few years only. There was some concern, however, that the new, high artificially-induced breeding density might alter hoopoe mating and reproductive behaviour. As the species underwent a serious demographic bottleneck in the 1970-1990s, we also used the microsatellite markers to reconstitute the demo-genetic history of the population, looking in particular for signs of genetic erosion. We found i) a low occurrence of extra-pair paternity, polygyny and conspecific brood parasitism, ii) a high level of neutral genetic diversity (mean number of alleles and expected heterozygosity per locus: 13.8 and 83%, respectively) and, iii) evidence for genetic connectivity through recent immigration of individuals from well differentiated populations. The recent increase in breeding density did thus not induce so far any noticeable detrimental changes in mating and reproductive behaviour. The demographic bottleneck undergone by the population in the 1970s-1990s was furthermore not accompanied by any significant drop in neutral genetic diversity. Finally, genetic data converged with a concomitant demographic study to evidence that immigration strongly contributed to local population recovery.
Resumo:
Male dominance hierarchies are usually linked to relative body size and to weapon size, that is, to determinants of fighting ability. Secondary sexual characters that are not directly used as weapons could still be linked to dominance if they reveal determination or overall health and vigour and hence, indirectly, fighting ability. We studied the mating behaviour of the minnow, Phoxinus phoxinus, a cyprinid fish in which males develop breeding tubercles during the spawning season. The function of these breeding tubercles is still not clear. Using microsatellite markers, we determined male reproductive success under controlled conditions. The minnows were territorial and quickly established a dominance hierarchy at the beginning of the spawning season. Dominance was strongly and positively linked to fertilization success. Although body size and number of breeding tubercles were not significantly correlated in our sample, both large males and males with many breeding tubercles were more dominant and achieved higher fertilization success than small males or males with few tubercles. We found multimale fertilization in most clutches, suggesting that sperm competition is important in this species. Females showed behaviour that may be linked to spawning decision, that is, male dominance might not be the only determinant of male reproductive success in minnows
Resumo:
BACKGROUND: Individuals commonly prefer certain trait values over others when choosing their mates. If such preferences diverge between populations, they can generate behavioral reproductive isolation and thereby contribute to speciation. Reproductive isolation in insects often involves chemical communication, and cuticular hydrocarbons, in particular, serve as mate recognition signals in many species. We combined data on female cuticular hydrocarbons, interspecific mating propensity, and phylogenetics to evaluate the role of cuticular hydrocarbons in diversification of Timema walking-sticks. RESULTS: Hydrocarbon profiles differed substantially among the nine analyzed species, as well as between partially reproductively-isolated T. cristinae populations adapted to different host plants. In no-choice trials, mating was more likely between species with similar than divergent hydrocarbon profiles, even after correcting for genetic divergences. The macroevolution of hydrocarbon profiles, along a Timema species phylogeny, fits best with a punctuated model of phenotypic change concentrated around speciation events, consistent with change driven by selection during the evolution of reproductive isolation. CONCLUSION: Altogether, our data indicate that cuticular hydrocarbon profiles vary among Timema species and populations, and that most evolutionary change in hydrocarbon profiles occurs in association with speciation events. Similarities in hydrocarbon profiles between species are correlated with interspecific mating propensities, suggesting a role for cuticular hydrocarbon profiles in mate choice and speciation in the genus Timema.
Resumo:
Dendritic cells (DCs) are the most potent antigen-presenting cells in the human lung and are now recognized as crucial initiators of immune responses in general. They are arranged as sentinels in a dense surveillance network inside and below the epithelium of the airways and alveoli, where thet are ideally situated to sample inhaled antigen. DCs are known to play a pivotal role in maintaining the balance between tolerance and active immune response in the respiratory system. It is no surprise that the lungs became a main focus of DC-related investigations as this organ provides a large interface for interactions of inhaled antigens with the human body. During recent years there has been a constantly growing body of lung DC-related publications that draw their data from in vitro models, animal models and human studies. This review focuses on the biology and functions of different DC populations in the lung and highlights the advantages and drawbacks of different models with which to study the role of lung DCs. Furthermore, we present a number of up-to-date visualization techniques to characterize DC-related cell interactions in vitro and/or in vivo.
Resumo:
The objective of this work was to evaluate variability in reproductive biology traits and the correlation between them in genotypes of 'Oblačinska' sour cherry (Prunus cerasus). High genetic diversity was found in the 41 evaluated genotypes, and significant differences were observed among them for all studied traits: flowering time, pollen germination, number of fruiting branches, production of flower and fruit, number of flowers per bud, fruit set, and limb yield efficiency. The number of fruiting branches significantly influenced the number of flower and fruit, fruit set, and yield efficiency. In addition to number of fruiting branches, yield efficiency was positively correlated with fruit set and production of flower and fruit. Results from principal component analysis suggested a reduction of the reproductive biology factors affecting yield to four main characters: number and structure of fruiting branches, flowering time, and pollen germination. Knowledge of the reproductive biology of the 'Oblačinska' genotypes can be used to select the appropriate ones to be grown or used as parents in breeding programs. In this sense, genotypes II/2, III/9, III/13, and III/14 have very good flower production and satisfactory pollen germination.
Resumo:
Biological scaling analyses employing the widely used bivariate allometric model are beset by at least four interacting problems: (1) choice of an appropriate best-fit line with due attention to the influence of outliers; (2) objective recognition of divergent subsets in the data (allometric grades); (3) potential restrictions on statistical independence resulting from phylogenetic inertia; and (4) the need for extreme caution in inferring causation from correlation. A new non-parametric line-fitting technique has been developed that eliminates requirements for normality of distribution, greatly reduces the influence of outliers and permits objective recognition of grade shifts in substantial datasets. This technique is applied in scaling analyses of mammalian gestation periods and of neonatal body mass in primates. These analyses feed into a re-examination, conducted with partial correlation analysis, of the maternal energy hypothesis relating to mammalian brain evolution, which suggests links between body size and brain size in neonates and adults, gestation period and basal metabolic rate. Much has been made of the potential problem of phylogenetic inertia as a confounding factor in scaling analyses. However, this problem may be less severe than suspected earlier because nested analyses of variance conducted on residual variation (rather than on raw values) reveals that there is considerable variance at low taxonomic levels. In fact, limited divergence in body size between closely related species is one of the prime examples of phylogenetic inertia. One common approach to eliminating perceived problems of phylogenetic inertia in allometric analyses has been calculation of 'independent contrast values'. It is demonstrated that the reasoning behind this approach is flawed in several ways. Calculation of contrast values for closely related species of similar body size is, in fact, highly questionable, particularly when there are major deviations from the best-fit line for the scaling relationship under scrutiny.
Resumo:
Flowers of Annonaceae are characterized by fleshy petals, many stamens with hard connective shields and numerous carpels with sessile stigmas often covered by sticky secretions. The petals of many representatives during anthesis form a closed pollination chamber. Protogynous dichogamy with strong scent emissions especially during the pistillate stage is a character of nearly all species. Scent emissions can be enhanced by thermogenesis. The prevailing reproductive system in the family seems to be self-compatibility. The basal genus Anaxagorea besides exhibiting several ancestral morphological characters has also many characters which reappear in other genera. Strong fruit-like scents consisting of fruit-esters and alcohols mainly attract small fruit-beetles (genus Colopterus, Nitidulidae) as pollinators, as well as several other beetles (Curculionidae, Chrysomelidae) and fruit-flies (Drosophilidae), which themselves gnaw on the thick petals or their larvae are petal or ovule predators. The flowers and the thick petals are thus a floral brood substrate for the visitors and the thick petals of Anaxagorea have to be interpreted as an antipredator structure. Another function of the closed thick petals is the production of heat by accumulated starch, which enhances scent emission and provides a warm shelter for the attracted beetles. Insight into floral characters and floral ecology of Anaxagorea, the sister group of the rest of the Annonaceae, is particularly important for understanding functional evolution and diversification of the family as a whole. As beetle pollination (cantharophily) is plesiomorphic in Anaxagorea and in Annonaceae, characters associated with beetle pollination appear imprinted in members of the whole family. Pollination by beetles (cantharophily) is the predominant mode of the majority of species worldwide. Examples are given of diurnal representatives (e.g., Guatteria, Duguetia, Annona) which function on the basis of fruit-imitating flowers attracting mainly fruit-inhabiting nitidulid beetles, as well as nocturnal species (e.g., large-flowered Annona and Duguetia species), which additionally to most of the diurnal species exhibit strong flower warming and provide very thick petal tissues for the voracious dynastid scarab beetles (Dynastinae, Scarabaeidae). Further examples will show that a few Annonaceae have adapted in their pollination also to thrips, flies, cockroaches and even bees. Although this non-beetle pollinated species have adapted in flower structure and scent compounds to their respective insects, they still retain some of the specialized cantharophilous characters of their ancestors.
Resumo:
The effect of diet on barn owl (Tyto alba) breeding biology has been well studied in the temperate regions but not in the more arid Middle East. In temperate regions, barn owls are darker colored and mainly prey upon Cricetidae rodents, whereas in arid regions, they are lighter colored and prey to a larger degree upon Muridae rodents. In this study we analyzed the diet and breeding success of 261 barn owl pairs nesting in Israel. The reproductive success of barn owls declined from March to August, and fledged more young when they consumed a larger proportion of social voles (Microtus socialis guentheri). Although the diet of the lighter colored barn owls in Israel comprises more Muridae than that of the darker morphs in temperate regions, in both regions the number of barn owl young increases with an increased proportion of voles in the diet.
Resumo:
A study of the floral biology and the breeding system of Ferdinandusa speciosa Pohl (Rubiaceae) was carried out from March to September 1996 in Uberlândia, MG, central Brazil. This species is a shrub or small tree that occurs in swampy edges of gallery forests. The two studied populations flowered somewhat asynchronously from March to July. The tubular flowers are red, approximately 4.7 cm long and last for two days. They are protandrous and the pollen is available one day before the stigma becomes receptive. The beginning of anthesis and the opening of the stigmatic lips occur at dusk. The nectar is secreted during both the male and the female phases, with concentration of sugars greater in the male phase. The flowers are pollinated by two hummingbird species, Chlorostilbon aureoventris and Phaethornis pretrei. Ferdinandusa speciosa is a self-compatible, non-apomictic species, with low fruit production under natural conditions in the populations studied. No differences were found between fruit set of self- and cross-pollinated flowers, nor in the pollen tube growth rate in the pistils of these flowers. The seeds formed by cross-pollination are larger, heavier and show a higher percentage of germination than those formed by self-pollination, which indicates inbreeding depression. This result suggests that, although the species is self-compatible, cross-pollination may be advantageous.