972 resultados para -440 yr BP
Resumo:
The reconstruction of the stable carbon isotope evolution in atmospheric CO2 (δ13Catm), as archived in Antarctic ice cores, bears the potential to disentangle the contributions of the different carbon cycle fluxes causing past CO2 variations. Here we present a new record of δ13Catm before, during and after the Marine Isotope Stage 5.5 (155 000 to 105 000 yr BP). The dataset is archived on the data repository PANGEA® (www.pangea.de) under 10.1594/PANGAEA.817041. The record was derived with a well established sublimation method using ice from the EPICA Dome C (EDC) and the Talos Dome ice cores in East Antarctica. We find a 0.4‰ shift to heavier values between the mean δ13Catm level in the Penultimate (~ 140 000 yr BP) and Last Glacial Maximum (~ 22 000 yr BP), which can be explained by either (i) changes in the isotopic composition or (ii) intensity of the carbon input fluxes to the combined ocean/atmosphere carbon reservoir or (iii) by long-term peat buildup. Our isotopic data suggest that the carbon cycle evolution along Termination II and the subsequent interglacial was controlled by essentially the same processes as during the last 24 000 yr, but with different phasing and magnitudes. Furthermore, a 5000 yr lag in the CO2 decline relative to EDC temperatures is confirmed during the glacial inception at the end of MIS5.5 (120 000 yr BP). Based on our isotopic data this lag can be explained by terrestrial carbon release and carbonate compensation.
Resumo:
Prior to ca. 14,660 yr BP, during the early Late-glacial (Oldest Dryas), larval assemblages of Chironomidae (Insecta: Diptera) in Gerzensee, Switzerland, were dominated by cold stenothermic taxa as well as by taxa typical of subalpine lakes today. This was the coldest period of the entire sequence. After ca. 14,660 yr BP, in the Late Glacial Interstadial (Bølling–Allerød), a temperature increase is recorded by a sharp rise in the oxygen-isotope ratio in lake marl and by an increase in the organic-matter content of the sediments. Changes in the chironomid fauna then are consistent with rising temperatures. This warming trend is interrupted between 14,070 and 13,940 yr BP, coinciding with the GI-1d cold oscillation, but the change in the chironomid assemblage is more consistent with a response to increasing lake depth and density of aquatic macrophytes than falling temperature. A rise in cold-adapted chironomid taxa between 13,840 and 13,710 yr BP suggests that summer air temperatures may have declined. Changes in the chironomid assemblage after 13,710 yr BP suggest a decline in submerged macrophytes coupled with a rise in lake productivity and summer temperature, although the latter is not reflected in the oxygen-isotope record. This suggests that there may have been increasing seasonality during this period when summer temperatures were rising, driven by rising summer insolation, and winters becoming cooler, which is largely reflected in the oxygen-isotope record. A decline in thermophilic chironomids and a rise in cold-adapted taxa after 13,180 yr BP suggest a response to cooling at the beginning of the Gerzensee Oscillation.
Resumo:
The transition from the Oldest Dryas to the Bølling around 14,685 cal yr BP was a period of extremely rapid climatic warming. From a single core of lake marl taken at Gerzensee (Switzerland) we studied the transition in stable isotopes of oxygen and carbon on bulk sediment and charophyte remains, as well as on monospecific samples of ostracods, after Pisidium a; in addition pollen, chironomids, and Cladocera were analyzed. The δ18O record serves as an estimate of mean air temperature, and by correlation to the one from NGRIP in Greenland it provides a timescale. The timing of responses: The statistically significant zone boundaries of the biostratigraphies are telescoped at the rapid increase of about 3‰ in δ18O at the onset of Bølling. Biotic responses may have occurred within sampling resolution (8 to 16 years), although younger zone boundaries are less synchronous. Gradual and longer-lasting responses include complex processes such as primary or secular succession. During the late-glacial interstadial of Bølling and Allerød, two stronger and two weaker cool phases were found. Biological processes involved in the responses occurred on levels of individuals (e.g. pollen productivity), of populations (increases or decreases, immigration, or extinction), and on the ecosystem level (species interactions such as facilitation or competition). Abiotic and biotic interactions include pedogenesis, nitrogen-fixation, nutrient cycling, catchment hydrology, water chemistry of the lake and albedo (controlled by the transition from tundra to forest). For the Swiss Plateau this major change in vegetation induced a change in the mammal fauna, which in turn led to changes in the tool-making by Paleolithic people.
Resumo:
High-resolution pollen analyses made on the same samples on which the ratios of oxygen isotopes were measured that provided the time scale and a temperature proxy after correlation to NorthGRIP. (1) A primary succession: The vegetation responded to the rapid rise of temperatures around 14,685 yr BP, with a primary succession on a decadal to centennial time scale. The succession between ca 15,600 and 13,000 yr BP included: (1.1.) The replacement of shrub-tundra by woodland of Juniperus and tree birch (around 14,665 yr BP) (1.2.) The response of Juniperus pollen to the shift in oxygen isotopes in less than 20 yr, (1.3.) A sequence of population increases of Hippophaë rhamnoides (ca 14,600 yr BP), Salix spp. (ca 14,600 yr BP), Betula trees (ca.14,480 yr BP), Populus cf. tremula (ca. 14,300 yr BP), and Pinus cf. sylvestris (ca. 13,830 yr BP). (2) Biological processes: Plants responded to the rapid increase of summer temperatures on all organisational levels: (2.1) Individuals may have produced more pollen (e.g. Juniperus); (2.2) Populations increased or decreased (e.g. Juniperus, Betula, later Pinus), and (2.3) Populations changed their biogeographical range and may show migrational lags. (2.4) Plant communities changed in their composition because the species pools changed through immigration and (local) extinction. Some plant communities may have been without modern analogue.These mechanisms require increasing amounts of time. (2.5) Processes on the level of ecosystems, with species interactions, may involve various time scales. Besides competition and facilitation, nitrogen fixation is discussed. (3) The minor fluctuations of temperature during the Late-Glacial Interstadial, which are recorded in δ18O, resulted in only very minor changes in pollen during the Aegelsee Oscillation (Older Dryas biozone, GI-1d) and the Gerzensee Oscillation (GI-1b). (4) Biodiversity: The afforestation at the onset of Bølling coincided with a gradual increase of taxonomic diversity up to the time of the major Pinus expansion.
Resumo:
Sub-fossil Cladocera were studied in a core from Gerzensee (Swiss Plateau) for the late-glacial periods of Oldest Dryas, Bølling, and Allerød. Cladocera assemblages were dominated by cold-tolerant littoral taxa Chydorus sphaericus, Acroperus harpae, Alonella nana, Alona affinis, and Alonella excisa. The rapid warming at the beginning of the Bølling (GI-1e) ca. 14,650 yr before present (BP: before AD 1950) was indicated by an abrupt 2‰ shift in carbonate δ18O and a clear change in pollen assemblages. Cladocera assemblages, in contrast, changed more gradually. C. sphaericus and A. harpae are the most cold-tolerant, and their abundance was highest in the earliest part of the record. Only 150–200 years after the beginning of the Bølling warming we observed an increase in less cold-tolerant A. excisa and A. affinis. The establishment of Alona guttata, A. guttata var. tuberculata, and Pleuroxus unicatus was delayed by ca. 350, 770, and 800 years respectively after the onset of the Bølling. The development of the Cladocera assemblages suggests increasing water temperatures during the Bølling/Allerød, which agrees with the interpretation by von Grafenstein et al. (2013-this issue) that decreasing δ18O values in carbonates in this period reflect increasing summer water temperatures at the sediment–water interface. Other processes also affected the Cladocera community, including the development and diversification of aquatic vegetation favourable for Cladocera. The record is clearly dominated by Chydoridae, as expected for a littoral core. Yet, the planktonic Eubosmina-group occurred throughout the core, with the exception of a period at ca. 13,760–13,420 yr BP. Lake levels reconstructed for this period are relatively low, indicating that the littoral location might have become too shallow for Eubosmina in that period.
Variations in Ice Rafted Detritus on Beaches in the South Shetland Islands: A Possible Climate Proxy
Resumo:
Raised beach ridges on Livingston Island of the South Shetland Islands display variations in both quantity and source of ice rafted detritus (IRD) received over time. Whereas the modem beach exhibits little IRD, all of which is of local origin, the next highest beach (similar to250 C-14 yr BP) has large amounts, some of which comes from as far away as the Antarctic Peninsula. Significant quantities of IRD also were deposited similar to 1750 C-14 yr BP. Both time periods coincide with generally cooler regional conditions and, at least in the case of the similar to250 yr old beach, local glacial advance. We suggest that the increases in ice rafting may reflect periods of greater glacial activity, altered ocean circulation, and/or greater iceberg preservation during the late Holocene. Limited IRD and lack of far-travelled erratics on the modem beach are both consistent with the ongoing warming trend in the Antarctic Peninsula region.
Resumo:
Since multi-site reconstructions are less affected by site-specific climatic effects and artefacts, regional palaeotemperature reconstructions based on a number of sites can provide more robust estimates of centennial- to millennial-scale temperature trends than individual, site-specific records. Furthermore, reconstructions based on multiple records are necessary for developing continuous climate records over time scales longer than covered by individual sequences. Here, we present a procedure for developing such reconstructions based on relatively short (centuries to millennia), discontinuously sampled records as are typically developed when using biotic proxies in lake sediments for temperature reconstruction. The approach includes an altitudinal correction of temperatures, an interpolation of individual records to equal time intervals, a stacking procedure for sections of the interval of interest that have the same records available, as well as a splicing procedure to link the individual stacked records into a continuous reconstruction. Variations in the final, stacked and spliced reconstruction are driven by variations in the individual records, whereas the absolute temperature values are determined by the stacked segment based on the largest number of records. With numerical simulations based on the NGRIP δ18O record, we demonstrate that the interpolation and stacking procedure provides an approximation of a smoothed palaeoclimate record if based on a sufficient number of discontinuously sampled records. Finally, we provide an example of a stacked and spliced palaeotemperature reconstruction 15000–90 calibrated 14C yr BP based on six chironomid records from the northern and central Swiss Alps and eastern France to discuss the potential and limitations of this approach.
Resumo:
Vegetation changes in the Maya Lowlands during the Holocene are a result of changing climate conditions, solely anthropogenic activities, or interactions of both factors. As a consequence, it is difficult to assess how tropical ecosystems will cope with projected changes in precipitation and land-use intensification over the next decades. We investigated the role offire during the Holocene by combining macroscopic charcoal and the molecular fire proxies levoglucosan, mannosan and galactosan. Combining these two different fire proxies allows a more robust understanding of the complex history of fire re- gimes at different spatial scales during the Holocene. In order to infer changes in past biomass burning, we analysed a lake sediment core from Lake Peten Itza, Guatemala, and compared our results with millennial-scale vegetation and climate change available in the area. We detected three periods of high fire activity during the Holocene: 9500 e 6000 cal yr BP, 3700 cal yr BP and 2700 cal yr BP. We attribute the first maximum mostly to climate conditions and the last maximum to human activities. The rapid change between burned vegetation types at the 3700 cal yr BP fire maximum may result from human activity.
Resumo:
Diatoms, Cladocera, and chironomids preserved in the sediments of Lake Dalgoto were studied to reconstruct the history of the lake ecosystem in the context of the vegetation history as represented by the pollen stratigraphy. Younger Dryas silty sediments at the base of the core are characterized by low diversity of aquatic organisms. The transition to the Holocene is indicated by a sharp change from silt to clay-gyttja. The migration and expansion of trees at lower elevations between 10200 and 8500 14C-yr BP, along with higher diversities and concentrations of aquatic organisms and the decreased proportion of north-alpine diatoms, point to rapidly rising summer temperatures. After 6500 14C-yr BP the expansion of Pinus mugo in the catchment coincides with signs of natural eutrophication as recorded by an increase of planktonic diatoms. In the late Holocene (4000–0 14C-yr BP) Pinus peuce and Abies are reduced and Picea expands. Cereal grains and disturbance indicators suggest late-Holocene human modification of the vegetation.
Resumo:
Pollen stratigraphy of a core 270 cm long from Lake Dalgoto at 2310 m in the Northern Pirin Mountains, southern Bulgaria, was treated by optimal partitioning and compared to a broken-stick model to reveal statistically significant pollen zones. The vegetational reconstructions presented here are based on pollen percentages and pollen influx, on comparisons of modern and fossil pollen spectra, and on macrofossil dates from other sites in the mountains. During the Younger Dryas (11000–10200 14C yr BP), an open xerophytic herb vegetation with Artemisia and Chenopodiaceae was widely developed around the lake. Deciduous trees growing at lower elevations contributed to the pollen rain deposited at the higher-elevation sampling sites. Specifically, from 10200 to 8500 yr BP, Quercus, Ulmus, Tilia and Betula expanded rapidly at low and intermediate elevations, and between 8500 and 6500 yr BP they extended to higher elevations close to the upper forest limit, which was formed by Betula pendula at about 1900 m. Coniferous species were limited in the region at this time. After 6500 yr BP, the expansion of conifers (Pinus peuce, P. sylvestris, P. mugo, Abies alba) at high elevations forced the deciduous trees downward. Between 6500 and 3000 yr BP, the forest limit at 2200 m was formed by P. peuce, and A. alba had its maximum vertical range up to 1900 m. Later the abundance and vertical range of P. peuce and A. alba were reduced. After 3000 yr BP, Picea expanded.
Resumo:
Stratigraphy, radiocarbon dating and analyses of pollen, plant macrofossils and testate amoebae were used to reconstruct the development and ecology of a small raised bog in a karst-dominated landscape in the Swiss Jura Mountains. Special focus was on past vegetation and on the history of Pinus rotundata in relation to anthropogenic and climatic influences. Testate amoebae were used to reconstruc-t past local soil pH and water-table depth. The inferred development of the Praz-Rodet bog typifies a classic hydroseral tefrestrialization of a small basin. Two features are specific for this site. First, the bog was much wetter than today for a long period; according to our hypothesis, this only changed as a consequence of human activities. Second, two hiatuses are present at the coring location (Younger Dryas--early Preboreal, and 4700-2800 cal. yr BP), the former probably caused by low lake productivity due to cold temperatures and the latter by the erosional activity of the adjacent small river. The date of 2800 cal. yr BP for renewed peat accumulation may be related to climatic change (Subboreal-Subatlantic transition). Pollen indicators failed to show one hiatus: an apparently complete pollen sequence is therefore no guarantee of an uninterrupted sediment accumulation. Evidence of early minor human impact on the vegetation in the Joux Valley dates back to c. 6850 calendar years, congruous with the early Neolithic in the Jura Mountains. The history of Pinuis rotindata appears to be more complex than previously believed. Human activity is clearly responsible for the present abundance of this species, but the tree was naturally present on the bog long before the first evidence of important human disturbance of the site (1500 cal. yr BP). It is suggested that, in karst-dominated landscapes, dense forests growing on mineral soils around raised bogs may significantly reduce summer evapotranspiration by acting as windbreaks. Forest clearance results in increased evapotranspiration, causing a lowering of the water table on the bog and a modification of the vegetation cover. This hypothesis has implications for the management of similar small raised bogs in karst-dominated landscape.
Resumo:
In general, a moderate drying trend is observed in mid-latitude arid Central Asia since the Mid-Holocene, attributed to the progressively weakening influence of the mid-latitude Westerlies on regional climate. However, as the spatio-temporal pattern of this development and the underlying climatic mechanisms are yet not fully understood, new high-resolution paleoclimate records from this region are needed. Within this study, a sediment core from Lake Son Kol (Central Kyrgyzstan) was investigated using sedimentological, (bio)geochemical, isotopic, and palynological analyses, aiming at reconstructing regional climate development during the last 6000 years. Biogeochemical data, mainly reflecting summer moisture conditions, indicate predominantly wet conditions until 4950 cal. yr BP, succeeded by a pronounced dry interval between 4950 and 3900 cal. yr BP. In the following, a return to wet conditions and a subsequent moderate drying trend until present times are observed. This is consistent with other regional paleoclimate records and likely reflects the gradual Late Holocene diminishment of the amount of summer moisture provided by the mid-latitude Westerlies. However, climate impact of the Westerlies was apparently not only restricted to the summer season but also significant during winter as indicated by recurrent episodes of enhanced allochthonous input through snowmelt, occurring before 6000 cal. yr BP and at 5100-4350, 3450-2850, and 1900-1500 cal. yr BP. The distinct ~1500-year periodicity of these episodes of increased winter precipitation in Central Kyrgyzstan resembles similar cyclicities observed in paleoclimate records around the North Atlantic, likely indicating a hemispheric-scale climatic teleconnection and an impact of North Atlantic Oscillation (NAO) variability in Central Asia.
Resumo:
Radiocarbon-dated pollen, rhizopod, chironomid and total organic carbon (TOC) records from Nikolay Lake (73°20'N, 124°12'E) and a pollen record from a nearby peat sequence are used for a detailed environmental reconstruction of the Holocene in the Lena Delta area. Shrubby Alnus fruticosa and Betula exilis tundra existed during 10,300-4800 cal. yr BP and gradually disappeared after that time. Climate reconstructions based on the pollen and chironomid records suggest that the climate during ca. 10,300-9200 cal. yr BP was up to 2-3 °C warmer than the present day. Pollen-based reconstructions show that the climate was relatively warm during 9200-6000 cal. yr BP and rather unstable between ca. 5800-3700 cal. yr BP. Both the qualitative interpretation of pollen data and the results of quantitative reconstruction indicate that climate and vegetation became similar to modern-day conditions after ca. 3600 cal. yr BP. The chironomid-based temperature reconstruction suggests a relatively warm period between ca. 2300 and 1400 cal. yr BP, which corresponds to the slightly warmer climate conditions reconstructed from the pollen. Modern chironomid and rhizopod assemblages were established after ca. 1400 cal. yr BP.
Resumo:
We present a study based on X-ray chronologies and the stable isotopic composition of fossil Porites spp. corals from the northern Gulf of Aqaba (Red Sea) covering the mid-Holocene period from 5750 to 4450 14C years BP (before present). The stable oxygen and carbon isotopic compositions of five specimens reveal regular annual periodicities. Compared with modern Porites spp. from the same environment, the average seasonal delta18O amplitude of the fossil corals is higher (by ca. 0.35-0.60?), whereas annual growth rates are lower (by ca. 3.5 to 2 mm/year). This suggests stronger seasonality of sea surface temperatures and increased variability of the oxygen isotopic composition of the sea water due to changes in the precipitation and evaporation regime during the mid-Holocene. Most likely, summer monsoon rains reached the northern end of the Red Sea at that time. Average annual coral growth rates are diminished probably due to an increased input and resuspension of terrestrial debris to the shallow marine environment during more humid conditions. Our results corroborate published reports of paleodata and model simulations suggesting a northward migration of the African monsoon giving rise to increased seasonalities during the mid-Holocene over northeastern Africa and Arabia.
Resumo:
The West Antarctic ice sheet is particularly sensitive to global warming and its evolution and impact on global climate over the next few decades remains difficult to predict. In this context, investigating past sea ice conditions around Antarctica is of primary importance. Here, we document changes in sea ice presence, upper water column temperatures (0-200 m) and primary productivity over the last 9000 yr BP (before present) in the western Antarctic Peninsula (WAP) margin from a sedimentary core collected in the Palmer Deep Basin. Employing a multi-proxy approach, based on the combination of two biomarkers proxies (highly branched isoprenoid (HBI) alkenes for sea ice and TEXL86 for temperature) and micropaleontological data (diatom assemblages), we derived new Holocene records of sea ice conditions and upper water column temperatures. The early Holocene (9000-7000 yr BP) was characterized by a cooling phase with a short sea ice season. During the mid-Holocene (~7000-3800 yr BP), local climate evolved towards slightly colder conditions and a prominent extension of the sea ice season occurred, promoting a favorable environment for intensive diatom growth. The late Holocene (the last ~2100 yr) was characterized by warmer temperatures and increased sea ice presence, accompanied by reduced local primary productivity, likely in response to a shorter growing season compared to the early or mid-Holocene. The gradual increase in annual sea ice duration over the last 7000 yr might have been influenced by decreasing mean annual and spring insolation, despite increasing summer insolation. We postulate that, in addition to precessional changes in insolation, seasonal variability, via changes in the strength of the circumpolar Westerlies and upwelling activity, was further amplified by the increasing frequency/amplitude of the El Nino-Southern Oscillation (ENSO). However, between 3800 and 2100 yr BP, the lack of correlation between ENSO and climate variability in the WAP suggests that other climatic factors might have been more important in controlling WAP climate at this time.