985 resultados para 0.22 per mil


Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution analyses of the oxygen isotope ratio (18O/16O) of dissolved sulfate in pore waters have been made to depths of >400 meters below seafloor (mbsf) at open-ocean and upwelling sites in the eastern equatorial Pacific Ocean. d18O values of dissolved sulfate (d18O-SO4) at the organic-poor open-ocean Site 1231 gave compositions close to modern seawater (+9.5 per mil vs. Vienna-standard mean ocean water, providing no chemical or isotopic evidence for microbial sulfate reduction (MSR). In contrast, the maximum d18O values at Sites 1225 and 1226, which contain higher organic matter contents, are +20 per mil and +28 per mil, respectively. Depth-correlative trends of increasing d18O-SO4, alkalinity, and ammonium and the presence of sulfide indicate significant oxidation of sedimentary organic matter by sulfate-reducing microbial populations at these sites. Although sulfate concentration profiles at Sites 1225 and 1231 both show similarly flat trends without significant net MSR, d18O-SO4 values at Site 1225 reveal the presence of significant microbial sulfur-cycling activity, which contrasts to Site 1231. This activity may include contributions from several processes, including enzyme-catalyzed equilibration between oxygen in sulfate and water superimposed upon bacterial sulfate reduction, which would tend to shift d18O-SO4 toward higher values than MSR alone, and sulfide oxidation, possibly coupled to reduction of Fe and Mn oxides and/or bacterial disproportionation of sulfur intermediates. Large isotope enrichment factors observed at Sites 1225 and 1226 (epsilon values between 42 per mil and 79 per mil) likely reflect concurrent processes of kinetic isotope fractionation, equilibrium fractionation between sulfate and water, and sulfide oxidation at low rates of sulfate reduction. The oxygen isotope ratio of dissolved pore water sulfate is a powerful tool for tracing microbial activity and sulfur cycling by the deep biosphere of deep-sea sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benthic foraminiferal stable carbon isotope records from the South Atlantic show significant declines toward more "Pacific-like" values at ~7 and ~2.7 Ma, and it has been posited that these shifts may mark steps toward increased CO2 sequestration in the deep Southern Ocean as climate cooled over the late Neogene. We generated new stable isotope records from abyssal subantarctic Pacific cores MV0502-4JC and ELT 25-11. The record from MV0502-4JC suggests that the Southern Ocean remained well mixed and free of vertical or interbasinal d13C gradients following the late Miocene carbon shift (LMCS). According to the records from MV0502-4JC and ELT 25-11, however, cold, low d13C bottom waters developed in the Southern Ocean in the late Pliocene and persisted until ~1.7 Ma. These new data suggest that while conditions in the abyssal Southern Ocean following the LMCS were comparable to the present day, sequestration of respired CO2 may have increased in the deepest parts of the Southern Ocean during the late Pliocene, a critical period for the growth and establishment of the Northern Hemisphere ice sheets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pleistocene stable carbon isotope (d13C) records from surface and deep dwelling foraminifera in all major ocean basins show two distinct long-term carbon isotope fluctuations since 1.00 Ma. The first started around 1.00 Ma and was characterised by a 0.35 per mil decrease in d13C values until 0.90 Ma, followed by an increase of 0.60 per mil lasting until 0.50 Ma. The subsequent fluctuation started with a 0.40 per mil decrease between 0.50 and 0.25 Ma, followed by an increase of 0.30 per mil between 0.25 and 0.10 Ma. Here, we evaluate existing evidence and various hypotheses for these global Pleistocene d13C fluctuations and present an interpretation, where the fluctuations most likely resulted from concomitant changes in the burial fluxes of organic and inorganic carbon due to ventilation changes and/or changes in the production and export ratio. Our model indicates that to satisfy the long-term 'stability' of the Pleistocene lysocline, the ratio between the amounts of change in the organic and inorganic carbon burial fluxes would have to be close to a 1:1 ratio, as deviations from this ratio would lead to sizable variations in the depth of the lysocline. It is then apparent that the mid-Pleistocene climate transition, which, apart from the glacial cycles, represents the most fundamental change in the Pleistocene climate, was likely not associated with a fundamental change in atmospheric pCO2. While recognising that high frequency glacial/interglacial cycles are associated with relatively large (100 ppmv) changes in pCO2, our model scenario (with burial changes close to a 1:1 ratio) produces a maximum long-term variability of only 20 ppmv over the fluctuation between 1.00 and 0.50 Ma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stable carbon isotope ratio of atmospheric CO2 (d13Catm) is a key parameter in deciphering past carbon cycle changes. Here we present d13Catm data for the past 24,000 years derived from three independent records from two Antarctic ice cores. We conclude that a pronounced 0.3 per mil decrease in d13Catm during the early deglaciation can be best explained by upwelling of old, carbon-enriched waters in the Southern Ocean. Later in the deglaciation, regrowth of the terrestrial biosphere, changes in sea surface temperature, and ocean circulation governed the d13Catm evolution. During the Last Glacial Maximum, d13Catm and atmospheric CO2 concentration were essentially constant, which suggests that the carbon cycle was in dynamic equilibrium and that the net transfer of carbon to the deep ocean had occurred before then.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within the last decade, several early Eocene hyperthermals have been detected globally. These transient warming events have mainly been characterized geochemically - using stable isotopes, carbonate content measurements or XRF core scanning - yet detailed micropaleontological records are sparse, limiting our understanding of the driving forces behind hyperthermals and of the contemporaneous paleoceanography. Here, detailed geochemical and quantitative benthic foraminiferal records are presented from lower Eocene pelagic sediments of Deep Sea Drilling Project Site 401 (Bay of Biscay, northeast Atlantic). In calcareous nannofossil zone NP11, several clay-enriched levels correspond to negative d13C and d18O bulk-rock excursions with amplitudes of up to ~0.75 per mil, suggesting that significant injections of 12C-enriched greenhouse gasses and small temperature rises took place. Coeval with several of these hyperthermal events, the benthic foraminiferal record reveals increased relative abundances of oligotrophic taxa (e.g. Nuttallides umbonifera) and a reduction in the abundance of buliminid species followed by an increase of opportunistic taxa (e.g. Globocassidulina subglobosa and Gyroidinoides spp.). These short-lived faunal perturbations are thought to be caused by reduced seasonality of productivity resulting in a decreased Corg flux to the seafloor. Moreover, the sedimentological record suggests that an enhanced influx of terrigenous material occurred during these events. Additionally, the most intense d13C decline (here called level d) gives rise to a small, yet pronounced long-term shift in the benthic foraminiferal composition at this site, possibly due to the reappraisal of upwelling and the intensification of bottom water currents. These observations imply that environmental changes during (smaller) hyperthermal events are also reflected in the composition of deep-sea benthic communities on both short (<100 kyr) and longer time scales. We conclude that the faunal patterns of the hyperthermals observed at Site 401 strongly resemble those observed in other deep-sea early Paleogene hyperthermal deposits, suggesting that similar processes have driven them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analysed Mg/Ca, Sr/Ca and Ca isotope ratios of benthonic foraminifers from sediment core tops retrieved during several research cruises in the Atlantic Ocean, in order to improve the understanding of isotope fractionation and element partitioning resulting from biomineralisation processes and changes in ambient conditions. Species include foraminifers secreting tests composed of hyaline low magnesium calcite, porcelaneous high magnesium calcite as well as aragonite. Our results demonstrate systematic isotope fractionation and element partitioning patterns specific for these foraminiferal groups. Calcium isotope fractionation is similar in porcelaneous and hyaline calcite tests and both groups demonstrate the previously described anomaly with enrichment of heavy isotopes around 3 - 4 °C (Gussone and Filipsson, 2010). Calcium isotope ratios of the aragonitic species Hoeglundina elegans, on the other hand, are about 0.4 per mil lighter compared to the calcitic species, which is in general agreement with stronger fractionation in inorganic aragonite compared to calcite. However, the low and strongly variable Sr content suggests additional processes during test formation, and we propose that transmembrane ion transport or a precursor phase to aragonite may be involved. Porcelaneous tests, composed of high Mg calcite, incorporate higher amounts of Sr compared to hyaline low Mg calcite, in agreement with inorganic calcite systematics, but also porcelaneous tests with reduced Mg/Ca show high Sr/Ca. While calcium isotopes, Sr/Ca and Mg/Ca in benthonic foraminifers primarily appear to fractionate and partition with a dominant inorganic control, d44/40Ca temperature and growth rate dependencies of benthonic foraminifer tests favour a dominant contribution of light Ca by transmembrane transport relative to unfractionated seawater Ca to the calcifying fluid, thus controlling the formation of foraminiferal d44/40Ca and Sr/Ca proxy signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Late Quaternary oxygen (d18O) and carbon (d13C) isotopic records for the benthic foraminifer Uvigerina and the planktonic foraminifer Globigerina bulloides are presented for the upper 20 meters composite depth sediment sequence of Ocean Drilling Program Site 1014, Tanner Basin, in the outer California Borderland province. The benthic oxygen isotopic record documents a continuous >160-k.y. sequence from marine isotope Stage (MIS) 6 to the present day. The record closely resembles other late Quaternary North Pacific benthic isotope records, as well as the well-dated deep-sea sequence (SPECMAP), and thus provides a detailed chronologic framework. Site 1014 provides a useful record of the California response to climate change as it enters the southern California Border-land. Sedimentation rates are relatively constant and high (~11.5 cm/k.y. ). The planktonic foraminiferal record is well pre-served except during marine isotope Substages 5b and 5d, when normally high G. bulloides abundance is strongly diminished as a result of dissolution. The planktonic oxygen isotopic shift of ~3 per mil between the last glacial maximum and the Holocene suggests a surface water temperature shift of <7°C, similar to estimates from Hole 893A (Leg 146) to the north. Unlike Santa Barbara Basin, G. bulloides d18O values during the last interglacial (MIS 5) at Site 1014 were significantly higher than during the Holocene. In particular, marine isotope Substage 5e (Eemian) was ~0.8 per mil higher. This is unlikely to reflect a cooler Eemian but is instead the result of preferential dissolution of thin-shelled (low d18O) specimens during this interval. In this mid-depth basin, a large benthic d18O shift during Termination I suggests dramatic temperature and salinity changes in response to switches in the source of North Pacific Intermediate Water. Although d13C values of the planktonic foraminifer G. bulloides are in disequilibria with seawater and hence interpretations are limited, the G. bulloides record exhibits several negative d13C excursions found at other sites in the region (Sites 1017 and 893). This indicates a response of G. bulloides d13C to regional surface water processes along the southern California margin. A general increase in benthic carbon isotopic values (-1.75 per mil to -0.75 per mil) in Tanner Basin during the last 200 k.y. is overprinted with smaller fluctuations correlated with climate change. The coolest intervals during the last glacial maximum (MISs 2 and 4) exhibit lower benthic d13C values, which correlate with global 13C shifts. The opposite relationship is exhibited during the last interglacial before 85 ka, when lower benthic d13C values are associated with warmer intervals (marine isotope Substages 5c and 5e) of the last interglacial. These time intervals were also marked by decreased intermediate water ventilation. Increased dissolution and organic accumulation during Substages 5b and 5d are anticorrelated with the benthic d13C record. These results suggest that a delicate balance in intermediate water d13C has existed between the relative influences of global 13C and regional ventilation changes at the 1165-m water depth of Site 1014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present Pleistocene oxygen and carbon isotope records from two planktonic foraminifer species (Globigerinoides sacculifer and Neogloboquadrina dutertrei) from Ocean Drilling Program Site 847 (0°16'N, 95°19'W; 3334 m water depth). An average sample resolution of 4500 yr was obtained by sampling at an interval of 15 cm through a continuous 35-m section from 0 to 1.15 Ma. Our d18O-based chronology is similar to that derived independently by astronomically tuning the gamma-ray attenuation porosity evaluator (GRAPE) record (Shackleton et al., 1995), though offsets as large as ± 30 k.y. occur on occasion. The surface waters at eastern equatorial Pacific Site 847, 380 km west of the Galapagos, are characterized by strong and constant upwelling, elevated nutrient concentrations, and high productivity. The isotopic composition of G. sacculifer (300-355 µm) reflects conditions in the thin-surface mixed layer, and the composition of N. dutertrei (355-425 µm) monitors the subsurface waters of the permanent shallow (10-40 m) thermocline. The Pleistocene d18O difference (N. dutertrei minus G. sacculifer, Dd18Od-s) averages 0.9 per mil and ranges from 0 per mil to 1.7 per mil. Neglecting species effects and shell size, the average Pleistocene d13C difference (G. sacculifer minus N. dutertrei, Dd13Cs-d) is 0.0 per mil and ranges from -0.5 per mil to 0.5 per mil. The Dd18Od-s and Dd13Cs-d records are used to infer vertical contrasts in upper ocean water temperature and nutrient concentration, though d13C may also be influenced by other factors, such as CO2 gas exchange. Variations in the isotopic differences are often synchronous with glacial/interglacial climate change. Glacial periods are characterized by smaller vertical contrasts in both temperature and nutrient concentration, and by notably greater accumulation rates of N. dutertrei and CaCO3. We attribute these responses to greater upwelling at the equatorial divergence. Superimposed on the glacial/interglacial Dd18Od-s pattern is a long-term trend possibly associated with the advection of Peru Current waters. The temporal fluctuations in the isotopic contrasts are strikingly similar to those observed at Site 851 (Ravelo and Shackleton, this volume), suggesting that the inferred changes in thermal and chemical profiles occurred over a broad region in the equatorial Pacific.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The carbonate fraction of sediment core ODP 849, leg 138, located in the eastern equatorial Pacific, mostly consisting of coccoliths, was separated and analyzed for its Zn isotopic composition. The overall variation in Zn isotopic composition, as determined by multiple-collector, magnetic-sector, inductively coupled plasma mass spectrometry, was found to be on the order of 1? (expressed in delta66Zn, where deltaxZn=[(xZn/64Zn)sample/(xZn/64Zn)standard -1]*10**3 and x=66, 67 or 68) over the last 175 ka. The analytical precision was 0.04 per mil and the overall reproducibility was usually better than 0.07 per mil. The Zn isotopic composition signal exhibits several marked peaks and a high-frequency variability. A periodogram of the delta66Zn signal showed two periodicities of 35.2 and 21.2 ka. We suggest that the latter is caused by the precession of the Earth's axis of rotation. The periodogram exhibits a minimum at 41.1 ka, thus showing that the Zn isotopic composition is independent of the obliquity in the eastern equatorial Pacific. The range of delta66Zn values observed for the carbonate fraction of ODP 849 overlaps with the range observed for Fe-Mn nodules in the world's oceans, which suggests that seawater/carbonate Zn isotope fractionation is weak. We therefore assume that most of the Zn isotope variability is a result of the selective entrainment of the light isotopes by organic matter in the surface ocean. The ODP 849 delta66Zn record seems to follow the changes in the insolation cycles. Changes in the late summer/fall equatorial insolation modulate the intensity of the equatorial upwelling, hence the mixing between deep and surface waters. We propose that during decreased summer/fall equatorial insolation, when a steep thermocline can develop (El Niño-like conditions), the surface waters cannot be replenished by deep waters and become depleted in the lighter Zn isotopes by biological activity, thus resulting in the progressive increase of the delta66Zn values of the carbonate shells presumably in equilibrium with surface seawater.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formation of Labrador Sea Water proper commenced about 7000 years ago during the Holocene interglacial. To test whether fresher surface water conditions may have inhibited Labrador Sea Water convection during the early Holocene we measured planktonic foraminiferal (Globigerina bulloides) oxygen isotopes (d18O) and Mg/Ca ratios at Orphan Knoll (cores HU91-045-093 and MD95-2024, 3488 m) in the Labrador Sea to reconstruct shallow subsurface summer conditions (temperature and seawater d18O). Lighter foraminiferal d18O values are recorded during the early Holocene between 11000 and 7000 years ago. Part of these lighter foraminiferal d18O values can be explained by increased calcification temperatures. Reconstructed seawater d18O values were, however, still on average 0.5 per mil lighter compared with those of recent times, confirming that fresher surface waters in the Labrador Sea were probably a limiting factor in Labrador Sea Water formation during the early Holocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differential dissolution affects the isotopic composition of different species of planktonic foraminifera in different ways. In the two species studied here in cores from Ontong Java Plateau, the less resistant species, Globigerinoides sacculifer, is more readily affected at a shallower depth than the more resistant species, Pulleniatina obliquiloculata (2.9 versus 3.4 km), but shows a smaller and less predictable response to partial dissolution (0.2 to 0.3 per mil versus 0.6 to 0.7 per mil). Comparison of isotopic values from the last glacial period with those from the late Holocene indicates that the apparent dissolution effect is considerably reduced during the last glacial, presumably due to reduced dissolution intensity during glacial time. A change in the level of the lysocline of about 400 m is suggested. In the published isotope records from Pacific cores V28-238 and V28-239, the dissolution-generated difference in delta18O (noted previously by Shackleton and Opdyke [1976]) is seen to describe a mid-Brunhes dissolution maximum, between 300 and 500 thousand years ago. This mid-Brunhes dissolution excursion is well known from the Pacific and the Indian Ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcium-isotope ratios (d44/42Ca) were measured in carbonate-rich sedimentary sections deposited during Oceanic Anoxic Events 1a (Early Aptian) and 2 (Cenomanian-Turonian). In sections from Resolution Guyot, Mid-Pacific Mountains; Coppitella, Italy; and the English Chalk at Eastbourne and South Ferriby, UK, a negative excursion in d44/42Ca of ~0.20 per mil and ~0.10 per mil is observed for the two events. These d44/42Ca excursions occur at the same stratigraphic level as the carbon-isotope excursions that define the events, but do not correlate with evidence for carbonate dissolution or lithological changes. Diagenetic and temperature effects on the calcium-isotope ratios can be discounted, leaving changes in global seawater composition as the most probable explanation for d44/42Ca changes in four different carbonate sections. An oceanic box model with coupled strontium- and calcium-isotope systems indicates that a global weathering increase is likely to be the dominant driver of transient excursions in calcium-isotope ratios. The model suggests that contributions from hydrothermal activity and carbonate dissolution are too small and short-lived to affect the oceanic calcium reservoir measurably. A modelled increase in weathering flux, on the order of three times the modern flux, combined with increased hydrothermal activity due to formation of the Ontong-Java Plateau (OAE1a) and Caribbean Plateau (OAE2), can produce trends in both calcium and strontium isotopes that match the signals recorded in the carbonate sections. This study presents the first major-element record of a weathering response to Oceanic Anoxic Events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several carbonaceous layers or fragments were recovered from sediments of Sites 1150 and 1151 on the deep-sea terrace of the Japan Trench during Leg 186. The X-ray diffraction analysis (XRD) data indicate that these are predominantly dolomitic. In this study, carbon and oxygen isotopes of these carbonates recovered at Sites 1150 and 1151 are presented. The oxygen isotope ratios of the dolomites analyzed range from +0.4 per mil to +4.1 per mil vs. Peedee formation belemnite (PDB) and those of calcites from +0.6 per mil to +2.8 per mil PDB. The isotopic composition of carbon varies from -7.0 per mil to +12.3 per mil PDB in dolomite and from -13.4 per mil to -24.1 per mil PDB in calcite. The wide range of carbon isotopic compositions indicates that the carbonate samples were formed by the decomposition of organic matter through reactions such as oxidation, sulfate reduction, and methane formation during diagenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep marine late Pleistocene sediments from Ocean Drilling Program Sulu Sea Site 769 contain a high-resolution record of paleoceanographic change in this strongly monsoonal climatic setting in the tropical western Pacific. Detailed time series of planktonic foraminifer (G.ruber; white variety) d18O, d13C, and bulk CaCO3 mass accumulation rate (MAR) were generated, spanning the last 750 k.y. Sedimentation rates in this portion of the record average 8.5 cm/k.y., and vary from 4 to 16 cm/k.y. Cross spectral analysis of the d18O and d13C time-series demonstrate that each contains increased variance at the primary orbital periodicities. The d18O record shows strong variability in the precessional-band and closely correlates with the SPECMAP d18O record and other high-resolution records. The dominance of a 23-k.y cycle in the d18O record agrees with other studies of the monsoon system in the Indian Ocean that have documented the importance of precessional insolation as a monsoon-forcing mechanism. In addition, d13C is strongly coherent, with d18O at a period of 41 k.y (obliquity), suggesting a connection between surface water CO2 chemistry in the Sulu Sea and high- latitude climatic change. The d18O and d13C time-series both contain increased spectral variance at a period of 30 k.y. Although the source of 30-k.y. variability is unknown, other studies have documented late Pleistocene Pacific Oceanographic variability with a period of 30 k.y. Major- and trace-metal analyses were performed on a second, less-detailed sample series to independently assess paleoproductivity changes and bottom-water conditions through time. Glacial periods are generally times of increased calcium carbonate and copper accumulation. The positive association between these independent indicators of paleoproductivity suggests an increase in productivity in the basin during most glacial episodes. Changing bottom-water redox conditions were also assessed using the geochemical data. Low concentrations of molybdenum throughout the record demonstrate that bottom waters at this site were never anoxic during the last 750 k.y. The bioturbated character of the sediments agrees with this interpretation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concentrations of mercury (Hg) and other trace metals (Ni, Cu, Zn, Mo, Ba, Re, U) and the Hg isotopic composition were examined across a dramatic redox and productivity transition in a mid-Pleistocene Mediterranean Sea sapropel sequence. Characteristic trace metal enrichment in organic-rich layers was observed, with organic-rich sapropel layers ranging in Hg concentration from 314 to 488 ng/g (avg = 385), with an average enrichment in Hg by a factor of 5.9 compared to organic-poor background sediments, which range from 39 to 94 ng/g Hg (avg = 66). Comparison of seawater concentrations and sapropel accumulations of trace metals suggests that organic matter quantitatively delivers Hg to the seafloor. Near complete scavenging of Hg from the water column renders the sapropel Hg isotopic composition representative of mid-Pleistocene Mediterranean seawater. Sapropels have an average d202Hg value of -0.91 per mil ± 0.15 per mil (n = 5, 1 SD) and D199Hg value of 0.11 per mil ± 0.03 per mil (n = 5, 1 SD). Background sediments have an average d202Hg of -0.76 per mil ± 0.16 per mil (n = 5, 1 SD) and D199Hg of 0.05 per mil ± 0.01 per mil (n = 5, 1 SD), which is indistinguishable from the sapropel values. We suggest that the sapropel isotopic composition is most representative of the mid-Pleistocene Tyrrhenian Sea.