968 resultados para (Ag.) W. Sm.
MECHANICAL-PROPERTIES AND PRECIPITATION ENERGY OF THE CU-AL-AG (5.4-PERCENT-AL-5.2-PERCENT-AG) ALLOY
Resumo:
The Borborema Province of NE Brasil comprises the central part of a wide Pan-African-Brasiliano orogenetic belt that formed as a consequence of late Neoproterozoic convergence and collision of the São Luis-West Africa craton and the São Francisco-Congo-Kasai cratons. New Sm Nd and U Pb results from the eastern part of this province help to define the basic internal architecture and pre-collisional history of this province, with particular emphasis on delineating older cratonic terranes, their fragmentation during the Mesoproterozoic, and their assembly into West Gondwana during the Pan African-Brasiliano orogeny at ca. 600 Ma. The region can be divided into three major geotectonic domains: a) Rio Piranhas-Caldas Brandão massif, with overlying Paleoproterozoic to Neoproterozoic supracrustal rocks, north of the Patos Lineament; b) the Archean to Paleoproterozoic São Francisco craton (SFC) to the south; and c) a complex domain of Paleoproterozoic to Archean basement blocks with several intervening Mesoproterozoic to Neoproterozoic fold belts in the center (south of Patos Lineament and north of SFC). The northern and central domains comprise the Borborema Province. Archean basement gneiss and Transamazonian granulite of northern SFC are exposed in the southern part of the central domain, underlying southern parts of the Sergipano fold belt. Basement in the Rio Piranhas massif appears to consist mostly of Transamazonian (2.1 to 2.2 Ga) gneissic rocks; Nd model ages (TDM) of ca. 2.6 Ga for 2.15 Ga gneisses indicate a substantial Archean component in the protoliths to these gneisses. The Caldas Brandão massif to the east yields both Transamazonian and Archean U Pb zircon and Nd (TDM) ages, indicating a complex architecture. Metasedimentary rocks of the Jucurutu Formation yield detrital zircons with original crystallization ages as young as 1.8 Ga, indicating that these rocks may be late Paleoproterozoic and correlate with other ca. 1.8 Ga cratonic supracrustal rocks in Brazil such as the Roraima Group and Espinhaço Group. Most metavolcanic and pre-Brasiliano granitic units of the Sergipano (SDS), Pajeú-Paraíba (SPP), Riacho Pontal (SRP), and Piancó-Alto Brígida (SPAB) fold belts in the central domain formed ~ 1.0 ± 0.1 Ga, based on U Pb ages of zircons. Nd model ages (TDM) for these same rocks, as well as Brasiliano granites intruded into them and large parts of the Pernambuco-Alagoas massif, are commonly 1.3-1.7 Ga, indicating that rocks of the fold belts were not wholly derived from either older (> 2.1 Ga) or juvenile (ca. 1.0 Ga) crust, but include mixtures of both components. A simple interpretation of Brasiliano granite genesis and the Nd data implies that there is no Transamazonian or Archean basement underlying large parts of these fold belts or of the Pernambuco-Alagoas massif. An exception is a belt of syenitic Brasiliano plutons (Syenitoid Line) and host gneisses between SPAB and SPP that clearly has a Transamazonian (or older) source. In addition, there are several smaller blocks of Archean to Transamazonian gneiss that can be defined within and among these fold belts. These blocks do not appear to constitute a continuous basement complex, but appear to be isolated older crustal fragments. Our data support a model in which ca. 1.0 Ga rifting was an important tectonic and crust-forming event along the northern edge of the São Francisco craton. Our data also show that significant parts of the Borborema Province are not remobilized Transamazonian to Archean crust, but that Mesoproterozoic crust is a major feature of the Province. There are several small remnants of older crust within the area dominated by Mesoproterozoic crust, suggesting that the rifting event created several small continental fragments that were later incorporated into the Brasiliano collisional orogen. We cannot at present determine if the Rio Piranhas-Caldas Brandão massifs and the older crustal blocks of the central domain were originally part of the São Francisco craton or whether some (or all) of them came from more exotic parts of the Proterozoic Earth. Finally, our data have not yet revealed any juvenile terranes of either Transamazonian or Brasiliano age. © 1995.
Resumo:
Thoracocharax stellatus (Characiformes, Gasteropelecidae) is a small Neotropical species of fish, widely distributed in several rivers of South America. Evidence for karyotype heteromorphysm in populations from different geographical regions has been reported for this species. In this way, populations of T. stellatus from the Paraguay River basin were cytogenetically characterized and the results were compared with other studies performed in the same species but from different basins. The results showed a diploid number of 2n = 54 for T. stellatus, with chromosomes arranged in 6 metacentric (m), 6 submetacentric (sm), 2 subtelocentric (st) and 40 acrocentric (a), for both sexes, with a simple Nucleolus Organiser Region (NOR) system reported by the techniques of silver nitrate impregnation and fluorescent in situ hybridisation (FISH) using 18S rDNA sequences as probe. The distribution of constitutive heterochromatin, observed by the C-band technique and Chromomycin A3 staining showed great similarity among the analyzed populations and consists mainly of discrete blocks in the pericentromeric and telomeric regions of most chromosomes. The presence of female heterogamety was alsoobserved indicating a ZZ/ZW system with W chromosome almost totally heterochromatic. The results also show cytogenetic diversity of the group and are useful to understand the mechanisms of karyotype evolution of the family. © Edson Lourenço da Silva et al.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Neutron capture effects in meteorites and lunar surface samples have been successfully used in the past to study exposure histories and shielding conditions. In recent years, however, it turned out that neutron capture effects produce a nuisance for some of the short-lived radionuclide systems. The most prominent example is the 182Hf-182W system in iron meteorites, for which neutron capture effects lower the 182W/184W ratio, thereby producing too old apparent ages. Here, we present a thorough study of neutron capture effects in iron meteorites, ordinary chondrites, and carbonaceous chondrites, whereas the focus is on iron meteorites. We study in detail the effects responsible for neutron production, neutron transport, and neutron slowing down and find that neutron capture in all studied meteorite types is not, as usually expected, exclusively via thermal neutrons. In contrast, most of the neutron capture in iron meteorites is in the epithermal energy range and there is a significant contribution from epithermal neutron capture even in stony meteorites. Using sophisticated particle spectra and evaluated cross section data files for neutron capture reactions we calculate the neutron capture effects for Sm, Gd, Cd, Pd, Pt, and Os isotopes, which all can serve as neutron-dose proxies, either in stony or in iron meteorites. In addition, we model neutron capture effects in W and Ag isotopes. For W isotopes, the GCR-induced shifts perfectly correlate with Os and Pt isotope shifts, which therefore can be used as neutron-dose proxies and permit a reliable correction. We also found that GCR-induced effects for the 107Pd-107Ag system can be significant and need to be corrected, a result that is in contrast to earlier studies.
Resumo:
Sm.
Resumo:
Includes Ag Engineering and Agronomy Farm Farm and Weather Summary, Central Iowa Farms Farm and Weather Summary and Project Lists
Resumo:
Drilling at ODP Site 641 (on the western margin of Galicia Bank, off northwestern Spain) revealed a thin, but pronounced, interval of black shale and gray-green claystone. Our high-resolution study combines the sedimentology, micropaleontology (palynomorphs and others), organic and inorganic geochemistry, and isotopic values of this layer to demonstrate the distinct nature of the sediment and prove that the sequence represents the local sedimentary expression of the global Cenomanian/Turonian Oceanic Anoxic Event (OAE) of Schlanger and Jenkyns (1976), Arthur and Schlanger (1979), and Jenkyns (1980), also called the Cenomanian/Turonian Boundary Event (CTBE). The most striking evidence is that the strong positive d13C excursion characterizing the CTBE sequences in shallow areas can be traced into a pronounced deep-sea expression, thus providing a good stratigraphic marker for the CTBE in various paleosettings. The isotopic excursion at Site 641 coincides with an extremely enriched trace metal content, with values that were previously unknown for the Cretaceous Atlantic. Similar to other CTBE occurrences, the organic carbon content is high (up to 11%) and the organic matter is of dominantly marine origin (kerogen type II). The bulk mineralogy of the CTBE sediments does not differ significantly from the general trend of Cretaceous North Atlantic sediments (dominance of smectite and zeolite with minor amounts of illite and scattered palygorskite, kaolinite, and chlorite); thus, no evidence for either increased volcanic activity nor a drastic climatic change in the borderlands was found. Results from Site 641 are compared with the CTBE section found at Site 398, DSDP Leg 47B (Vigo Seamount at the southern end of the Galicia Bank).
Resumo:
Distribution, size, mineral, and chemical compositions of ferromanganese micronodules (FMMNs) and chemical composition of host sediments were examined in a series of red clay samples with ages from Eocene to the present at Ocean Drilling Program Leg 199, Site 1216, south of the Molokai Fracture Zone in the Central Pacific Basin. The number of FMMNs changed drastically throughout the 40-m-long red clay intervals. FMMNs are abundant in the upper 9 m of core, decrease between 9 and 25 meters below seafloor (mbsf) with depth, and are very rare from 30 to 40 mbsf. Chemical composition of FMMNs showed high Mn/Fe ratios and Ni and Cu contents and a distinct positive Ce anomaly because of the existence of buserite. This suggests that FMMNs in the red clay from 25 mbsf to the top of the cored interval were deposited continuously in an oxic diagenetic bottom environment. The red clay below 30 mbsf with higher Mn contents contains few FMMNs but abundant tiny Mn particles within brown silicates coated by Fe (oxy-hydro)oxides. This indicates that the mode of manganese deposition changed between 25 and 30 mbsf.
Resumo:
The paper presents materials on composition and texture of weakly serpentinized ultrabasic rocks from the western and eastern walls of the Markov Deep (5°30.6'-5°32.4'N) in the rift valley of the Mid-Atlantic Ridge. Predominant harzburgites with protogranular and porphyroclastic textures contain two major generations of minerals: the first generation composes the bulk of rocks and consists of Ol_89.8-90.4 + En_90.2-90.8 + Di_91.8 + Chr (Cr#32.3-36.6, Mg#67.2-70.0), while the second generation composes very thin branching veinlets and consists of PlAn_32-47 + Ol_74.3-77.1 + Opx_55.7-71.9 + Cpx_67.5 + Amph_53.7-74.2 + Ilm. Syndeformational olivine neoblasts in recrystallization zones are highly magnesian. Concentrations and covariations of major elements in harzburgites indicate that these rocks are depleted in mantle residues (high Mg# of minerals and whole-rock samples and low in CaO, Al2O3, and TiO2) that are significantly enriched in trace HFSE and REE (Zr, Hf, Y, LREE, and all REE). Mineralogy and geochemistry of harzburgites were formed by interaction of mantle residues with hydrous, strongly fractionated melts that impregnated them. Mineral composition of veinlets in harzburgites and mineralogical-geochemical characteristics of related plagiogranites and gabbronorites suggest that these plagiogranites were produced by melt residuals after crystallization of gabbronorites. Modern characteristics of harzburgites were shaped by the following processes: (i) partial melting of mantle material simultaneously with its subsolidus deformations, (ii) brittle-plastic deformations associated with cataclastic flow and recrystallization, and (iii) melt percolation along zones of maximal stress relief and interaction of this melt with magnesian mantle residue.
Resumo:
Detailed data obtained on chemistry of sedimentary rocks from the Mountainous Crimea and the Northwestern Caucasus that were dated at the Cenomanian/Turonian boundary and formed during Oceanic Anoxic Event 2 make it possible to calculate dissolved oxygen concentration in bottom waters of the sedimentation basin. Enrichment factors of trace elements in black shales are revised and an explanation is suggested for genesis of the rocks with regard for unusual climatic changes.
Resumo:
In August-September 1991 during the SPASIBA expedition (Scientific Program on the Arctic and Siberian Aquatorium) aboard R/V Yakov Smirnitzky in the Laptev Sea ten samples of aerosols were collected by nylon nets. A combined approach including various analytical techniques, such as single-particle analysis, instrumental neutron activation analysis, and atomic absorption spectrophotometry, was used to study composition of the samples. Mass concentration of coarse-grained (>0.001 mm) insoluble fraction of aerosols ranged from 80 to 460 ng/m**3. In all the samples remains of land vegetation were found to be the dominant component. Organic carbon content of the aerosols ranged from 23 to 49%. Inorganic part of the samples was represented mainly by alumosilicates and quartz. Anthropogenic ''fly ash'' particles were observed in all the samples. Temporal variations of element concentrations resulted from differences in air masses entering the studied area.
Resumo:
Very significant enhancements of the element iridium have been observed in association with the Cretaceous/ Tertiary boundary in marine sediments laid down 65 m.y. ago and subsequently uplifted above the ocean's surface. If our hypothesis for the origin of the iridium and the cause of the Cretaceous/Tertiary life extinctions (the asteroid-impact theory) (Alvarez et al., 1980) is correct, the Ir anomaly should be associated with the Cretaceous/ Tertiary boundary region wherever it is intact. The present work was undertaken to search for the Ir anomaly in a deep-sea-drilling core, in order to check this aspect of the asteroid-impact theory.
Resumo:
New data on microstructures and mineral and chemical compositions of ferromanganese crusts sampled from the western slope of the Kuril Island Arc in the Sea of Okhotsk during cruises of R/V Vulkanolog are discussed. The study of the crusts using analytical electron microscopy methods revealed that their manganese phase is represented by vernadite, Fe-vernadite, todorokite, asbolane, and asbolane-buserite, while iron phase consists of hematite, hydrohematite, ferroxyhite, and magnetite. Lithic mineral assemblage includes apatite, quartz, epidote, and montmorillonite. According to chemical analysis most of the crusts contain significant part of volcanogenic and hydrothermal material. It is evident from elevated values of Mn/Fe and (Mn+Fe)/Ti ratios, low concentrations of some trace elements, and positive Eu anomaly.