995 resultados para water relative content
Resumo:
In the present paper, the ecology and feeding habits of euphausiids are described. The samples were taken at the time of the NE-monsoon (1964/65) by R. V. "Meteor" in the Arabian Sea and adjacent waters. 24 species were determined. According to distribution of the species, the following marine areas can be distinguished: Arabian Sea: 24 species, dominant are Euphausia diomedeae, E. tenera, E. distinguenda, Stylocheiron carinatum. Gulf of Aden: 10 species, dominant are Euphausia diomedeae, E. distinguenda. Red Sea: 6 species, dominant are Euphausia diomedeae, E. distinguenda. Gulf of Oman : 5 Species, dominant are Euphausia distinguenda, Pseudeupbaufia latifrons. Persian Gulf: 1 species - Pseudeuphausia latifrons. The total number of euphausiids indicate the biomass of this group. High densities of euphausiids (200-299 and > 300 individuals/100 m**3) occur in the innermost part of the Gulf cf Aden, in the area south of the equator near the African east coast, near Karachi (Indian west coast) and in the Persian Gulf. Comparison with data relating to production biology confirms that these are eutrophic zones which coincide with areas in which upwelling occurs at the time of the NE-monsoon. The central part of the Arabian Sea differs from adjacent waters by virtue of less dense euphausiid populations (> 199 individuals/100 m**3). Measurements relating to production biology demonstrate a relatively low concentration of primary food sources. Food material was ascertained by analysis of stomach content. The following omnivorous species were examined: Euphausia diomedeae, E. distinguenda, E. tenera, Pseudeuphausia latifrons and Thysanopoda tricuspidata. Apart from crustacean remains large numbers of Foraminifera, Radiolaria, tintinnids, dinoflagellates were found in the stomachs. Quantitatively crustaceans form the most important item in the diet. Food selection on the basis of size and form appears to be restricted to certain genera of tintinnids. The genera Stylocheiron and Nematoscelis are predators. Only crustacean remains were found in the stomachs of Stylocheiron abbreviatum, whereas Radiolaria, Foraminifera and tintinnids occurred to some extent in Nematasceli sp. Different euphausiids in the food chain in the Arabian Sea. In omnivorous species the position is variable, since they not only feed by filtering autotrophic and heterotrophic Protista, but also by predation on zooplankton. Carnivorous species without filtering apparatus feed exclusively on zooplankton of the size of copepods. Only these species are well established as occupying a higher position in the food chain. The parasitic protozoan Tbalassomyces fagei was found on Euphausia diomedeae, E. fenera, E. distinguenda and E. sanzoi.
Resumo:
Seed cotton yield and morphological changes in leaf growth were examined under drying soil with different phosphorus (P) concentrations in a tropical climate. Frequent soil drying is likely to induce a decrease in nutrients particularly P due to reduced diffusion and poor uptake, in addition to restrictions in available water, with strong interactive effects on plant growth and functioning. Increased soil P in field and in-ground soil core studies increased the seed cotton yield and related morphological growth parameters in a drying soil, with hot (daily maximum temperature >33°C) and dry conditions (relative humidity, 25% to 35%), particularly during peak boll formation and filling stage. The soil water content in the effective rooting zone (top 0.4 m) decreased to -1.5 MPa by day 5 of the soil drying cycle. However, the increased seed cotton yield for the high-P plants was closely related to increasing leaf area with increased P supply. Plant height, leaf fresh mass and leaf area per plant were positively related to the leaf P%, which increased with increasing P supply. Low P plants were lower in plant height, leaf area, and leaf tissue water in the drying soil. Individual leaf area and the water content of the fresh leaf (ratio of dry mass to fresh mass) were significantly dependent on leaf P%.
Resumo:
The objective of this study was to investigate patterns of soil water extraction and drought resistance among genotypes of bermudagrass (Cynodon spp.) a perennial C-4 grass. Four wild Australian ecotypes (1-1, 25a1, 40-1, and 81-1) and four cultivars (CT2, Grand Prix, Legend, and Wintergreen) were examined in field experiments with rainfall excluded to monitor soil water extraction at 30-190 cm depths. In the study we defined drought resistance as the ability to maintain green canopy cover under drought. The most drought resistant genotypes (40-1 and 25a1) maintained more green cover (55-85% vs 5-10%) during water deficit and extracted more soil water (120-160 mm vs 77-107 mm) than drought sensitive genotypes, especially at depths from 50 to 110 cm, though all genotypes extracted water to 190 cm. The maintenance of green cover and higher soil water extraction were associated with higher stomatal conductance, photosynthetic rate and relative water content. For all genotypes, the pattern of water use as a percentage of total water use was similar across depth and time We propose the observed genetic variation was related to different root characteristics (root length density, hydraulic conductivity, root activity) although shoot sensitivity to drying soil cannot be ruled out.