995 resultados para unsaturated soils
Resumo:
This report describes an investigation into the bioavailability and fate of trace metals and their subsequent impact on important soil microbiological functions such as nitrification, denitrification and methane oxidation in low and high Cu containing soils in the presence and absence of residual organic matter from sewage sludge additions made 10 years earlier. The soils being studied are part of long term sewage sludge trials and include a low Cu soil ( 13.3mg Cu/ kg soil, 4.18 LOI %), left un- amended to serve as a control soil, soil amended with a high Cu sewage sludge ( 278.3mg Cu/ kg soil, 6.52 LOI %) and soil amended with a low Cu sewage sludge ( 46.3mg Cu/ kg soil, 6.18 LOI %). Soil was also amended with inorganic metal salts ( 273.4mg Cu/ kg soil, 4.52 LOI %) to further investigate the impact of Cu in the absence of additional organic matter contained in applied sewage sludge. Data from the first two years of a project are presented which has included field- based studies at long term sewage sludge trials based in Watlington, Oxford, UK and laboratory based studies at the Institute of Grassland & Environmental Research, North Wyke, Devon, UK.
Resumo:
Ochre is an unwanted waste product that accumulates in wetlands and streams draining abandoned coal and metal mines. A potential commercial use for ochre is to remediate As contaminated soil. Arsenic contaminated soil (605 mg kg(-1)) was mixed with different ochres (A, B and C) in a mass ratio of 1:1 and shaken in 20 mL of deionised water. After 72 h As concentration in solution was ca. 500 mu g kg(-1) in the control and 1-2.5 mu g kg(-1) in the ochre treated experiments. In a second experiment soil:ochre mixtures of 0.05-1:1 were shaken in 20 mL of deionised water for 24 h. For Ochres A and C, as Solution concentration was reduced to ca. 1 mu gkg(-1) by 0.2-1:1 ochre:soil mixtures. For Ochre B, as concentration only reached ca. 1 mu g kg(-1) in the 1:1 ochre:soil inix. Sorption of As was best modelled by a Freundlich isotherm using As sorption per mass of goethite in the ochre (log K= 1.64, n = 0.79, R-2 = 0.76, p <= 0.001). Efficiency of ochre in removing As from solution increased with increasing total Fe, goethite, citrate dithionite extractable Fe and surface area. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Recent reports show that biogeochemical processes continue when the soil is frozen, but are limited by water availability. However, there is little knowledge about the interactive effects of soil and environmental variables on amounts of unfrozen water in frozen soils. The aims of this study were to determine the contributions of matric and osmotic potentials to the unfrozen water content of frozen soil. We determined the effects of matric and osmotic potential on unfrozen water contents of frozen mineral soil fractions (ranging from coarse sand to fine silt) at -7 degrees C, and estimated the contributions of these potentials to liquid water contents in samples from organic surface layers of boreal soils frozen at -4 degrees C. In the mineral soil fractions the unfrozen water contents appeared to be governed solely by the osmotic potential, but in the humus layers of the sampled boreal soils both the osmotic and matric potentials control unfrozen water content, with osmotic potential contributing 20 to 69% of the total water potential. We also determined pore size equivalents, where unfrozen water resides at -4 degrees C, and found a strong correlation between these equivalents and microbial CO2 production. The larger the pores in which the unfrozen water is found the larger the microbial activity that can be sustained. The osmotic potential may therefore be a key determinant of unfrozen water and carbon dynamics in frozen soil. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The adsorption of nutrient elements is one of the most important solid- and liquid-phase interactions determining the retention and release of applied plant nutrients and the efficiency of fertilization. The study showed that the soils with high cation exchange capacity (CEC), CaCO3 , organic matter contents, and heavy texture adsorbed more zinc (Zn). The alkaline soils from Pakistan adsorbed more Zn than English acidic soils. Langmuir and Freundlich isotherm fit was excellent, and r(2) values for the Langmuir isotherm were highly significant (r(2) =0.84 to 0.99). The Langmuir b values, representing the adsorptive capacity of a soil, increased as the texture fineness increased in the soil, with increases in the concentration of adsorptive material (such as organic matter and CaCO3) and with increases in CEC and pH. The alkaline soils from Pakistan had higher bonding energy constant and higher log Kf values than the acidic English soils. Sequential extraction of Zn in these soils showed that most of the Zn was held in CaCO3 pool in the alkaline soils, whereas in acidic soils adsorbed Zn was in exchangeable form.