995 resultados para traffic density
Resumo:
We explore the large spatial variation in the relationship between population density and burned area, using continental-scale Geographically Weighted Regression (GWR) based on 13 years of satellite-derived burned area maps from the global fire emissions database (GFED) and the human population density from the gridded population of the world (GPW 2005). Significant relationships are observed over 51.5% of the global land area, and the area affected varies from continent to continent: population density has a significant impact on fire over most of Asia and Africa but is important in explaining fire over < 22% of Europe and Australia. Increasing population density is associated with both increased and decreased in fire. The nature of the relationship depends on land-use: increasing population density is associated with increased burned are in rangelands but with decreased burned area in croplands. Overall, the relationship between population density and burned area is non-monotonic: burned area initially increases with population density and then decreases when population density exceeds a threshold. These thresholds vary regionally. Our study contributes to improved understanding of how human activities relate to burned area, and should contribute to a better estimate of atmospheric emissions from biomass burning.
Resumo:
We present the results of a density functional theory (DFT) investigation of the surfaces of rutile-like vanadium dioxide, VO2(R). We calculate the surface energies of low Miller index planes, and find that the most stable surface orientation is the (110). The equilibrium morphology of a VO2(R) particle has an acicular shape, laterally confined by (110) planes and topped by (011) planes. The redox properties of the (110) surface are investigated by calculating the relative surface free energies of the non-stoichiometric compositions as a function of oxygen chemical potential. It is found that the VO2(110) surface is oxidized with respect to the stoichiometric composition, not only at ambient conditions but also at the more reducing conditions under which bulk VO2 is stable in comparison with bulk V2O5. The adsorbed oxygen forms surface vanadyl species much more favorably than surface peroxo species.
Resumo:
This paper introduces a new adaptive nonlinear equalizer relying on a radial basis function (RBF) model, which is designed based on the minimum bit error rate (MBER) criterion, in the system setting of the intersymbol interference channel plus a co-channel interference. Our proposed algorithm is referred to as the on-line mixture of Gaussians estimator aided MBER (OMG-MBER) equalizer. Specifically, a mixture of Gaussians based probability density function (PDF) estimator is used to model the PDF of the decision variable, for which a novel on-line PDF update algorithm is derived to track the incoming data. With the aid of this novel on-line mixture of Gaussians based sample-by-sample updated PDF estimator, our adaptive nonlinear equalizer is capable of updating its equalizer’s parameters sample by sample to aim directly at minimizing the RBF nonlinear equalizer’s achievable bit error rate (BER). The proposed OMG-MBER equalizer significantly outperforms the existing on-line nonlinear MBER equalizer, known as the least bit error rate equalizer, in terms of both the convergence speed and the achievable BER, as is confirmed in our simulation study
Resumo:
Polymers with the ability to heal themselves could provide access to materials with extended lifetimes in a wide range of applications such as surface coatings, automotive components and aerospace composites. Here we describe the synthesis and characterisation of two novel, stimuli-responsive, supramolecular polymer blends based on π-electron-rich pyrenyl residues and π-electron-deficient, chain-folding aromatic diimides that interact through complementary π–π stacking interactions. Different degrees of supramolecular “cross-linking” were achieved by use of divalent or trivalent poly(ethylene glycol)-based polymers featuring pyrenyl end-groups, blended with a known diimide–ether copolymer. The mechanical properties of the resulting polymer blends revealed that higher degrees of supramolecular “cross-link density” yield materials with enhanced mechanical properties, such as increased tensile modulus, modulus of toughness, elasticity and yield point. After a number of break/heal cycles, these materials were found to retain the characteristics of the pristine polymer blend, and this new approach thus offers a simple route to mechanically robust yet healable materials.
Resumo:
This paper investigates urban canopy layers (UCL) ventilation under neutral atmospheric condition with the same building area density (λp=0.25) and frontal area density (λf=0.25) but various urban sizes, building height variations, overall urban forms and wind directions. Turbulent airflows are first predicted by CFD simulations with standard k-ε model evaluated by wind tunnel data. Then air change rates per hour (ACH) and canopy purging flow rate (PFR) are numerically analyzed to quantify the rate of air exchange and the net ventilation capacity induced by mean flows and turbulence. With a parallel approaching wind (θ=0o), the velocity ratio first decreases in the adjustment region, followed by the fully-developed region where the flow reaches a balance. Although the flow quantities macroscopically keep constant, however ACH decreases and overall UCL ventilation becomes worse if urban size rises from 390m to 5km. Theoretically if urban size is infinite, ACH may reach a minimum value depending on local roof ventilation, and it rises from 1.7 to 7.5 if the standard deviation of building height variations increases (0% to 83.3%). Overall UCL ventilation capacity (PFR) with a square overall urban form (Lx=Ly=390m) is better as θ=0o than oblique winds (θ=15o, 30o, 45o), and it exceeds that of a staggered urban form under all wind directions (θ=0o to 45o), but is less than that of a rectangular urban form (Lx=570m, Ly=270m) under most wind directions (θ=30o to 90o). Further investigations are still required to quantify the net ventilation efficiency induced by mean flows and turbulence.