995 resultados para surgery reconstruction
Resumo:
Background: Gamma Knife surgery (GKS) for vestibular schwannomas (VS) has a long-term clinical and scientific track record. After a period of de-escalation of dose prescription, results show a high rate of tumor control with improvement of clinical outcome (less than 1% facial palsy, 50-70% hearing preservation). Currently, there is controversial data about the active early treatment of intracanalicular (Koos I) VS. Methods: We prospectively analyzed 208 VS, focusing on 42 Koos I patients treated with GKS as first intention in Lausanne University Hospital, between July 2010 and February 2015. We concentrated on patient, tumor, and dosimetric characteristics. Special attention was given on the dose to the cochlea and its impact in maintaining serviceable hearing. Results: The mean follow-up period was 1.7 years (range 0.6-4.2). Twenty-six (61.9%) were females and 16 (38.1%) males. Preoperative serviceable hearing was present in 33 (78.57%) patients. The mean maximal diameter was 7.7 (5-10). The median target volume at the moment of GKS was 90 mm3 (range 17-317). The median prescription isodose volume was 118 mm3 (range 37-603). The median marginal dose administrated was 12 Gy (range 11-12). The median number of shots was 2 (range 1-9). The median isodose prescription was 50% (range 45-80%). The median maximal dose received by the cochlea in patients in GR class 1 and 2 was 4.2 Gy (mean 4.4 Gy, range 1.8-7.6). Our preliminary results showed 98% tumor control, with 30% shrinkage on MRI. The actuarial probability of keeping the same audition class for those with functional hearing at GKS was 80% at 3 years; the probability of keeping a functional hearing was more than 90%. A paraclinical evolution (on MRI and/or audiometry) at the time diagnosis, before GKS, was associated with a less good prognosis (p < 0.05). Conclusions: Our preliminary data suggest that Koos I patients should be treated early with GKS, before tumor growth, and/or hearing deterioration, as they have the highest probability of hearing preservation. The results in terms of functional outcome seemed comparable to, or even better than, the other Koos classes (i.e., larger lesions).
Resumo:
Objectives: We present the retrospective analysis of a single-institution experience for radiosurgery (RS) in brain metastasis (BM) with Gamma Knife (GK) and Linac. Methods: From July 2010 to July 2012, 28 patients (with 83 lesions) had RS with GK and 35 patients (with 47 lesions) with Linac. The primary outcome was the local progression-free survival (LPFS). The secondary outcome was the overall survival (OS). Apart a standard statistical analysis, we included a Cox regression model with shared frailty, to modulate the within-patient correlation (preliminary evaluation showed a significant frailty effect, meaning that the correlation within patient could be ignored). Results: The mean follow-up period was 11.7 months (median 7.9, 1.7-22.7) for GK and 18.1 (median 17, 7.5-28.7) for Linac. The median number of lesions per patient was 2.5 (1-9) in GK compared with 1 (1-3) in Linac. There were more radioresistant lesions (melanoma) and more lesions located in functional areas for the GK group. The median dose was 24 Gy (GK) compared with 20 Gy (Linac). The LPFS actuarial rate was as follows: for GK at 3, 6, 9, 12, and 17 months: 96.96, 96.96, 96.96, 88.1, and 81.5%, and remained stable till 32 months; for Linac at 3, 6, 12, 17, 24, and 33 months, it was 91.5, 91.5, 91.5, 79.9, 55.5, and 17.1%, respectively (p = 0.03, chi-square test). After the Cox regression analysis with shared frailty, the p-value was not statistically significant between groups. The median overall survival was 9.7 months for GK and 23.6 months for Linac group. Uni- and multivariate analysis showed a lower GPA score and noncontrolled systemic status were associated with lower OS. Cox regression analysis adjusting for these two parameters showed comparable OS rate. Conclusions: In this comparative report between GK and Linac, preliminary analysis showed that more difficult cases are treated by GK, with patients harboring more lesions, radioresistant tumors, and highly functional located. The groups look, in this sense, very heterogeneous at baseline. After a Cox frailty model, the LPFS rates seemed very similar (p < 0.05). The OS was similar, after adjusting for systemic status and GPA score (p < 0.05). The technical reasons for choosing GK instead of Linac were the anatomical location related to highly functional areas, histology, technical limitations of Linac movements, especially lower posterior fossa locations, or closeness of multiple lesions to highly functional areas optimal dosimetry with Linac
Resumo:
Computed tomography (CT) is a modality of choice for the study of the musculoskeletal system for various indications including the study of bone, calcifications, internal derangements of joints (with CT arthrography), as well as periprosthetic complications. However, CT remains intrinsically limited by the fact that it exposes patients to ionizing radiation. Scanning protocols need to be optimized to achieve diagnostic image quality at the lowest radiation dose possible. In this optimization process, the radiologist needs to be familiar with the parameters used to quantify radiation dose and image quality. CT imaging of the musculoskeletal system has certain specificities including the focus on high-contrast objects (i.e., in CT of bone or CT arthrography). These characteristics need to be taken into account when defining a strategy to optimize dose and when choosing the best combination of scanning parameters. In the first part of this review, we present the parameters used for the evaluation and quantification of radiation dose and image quality. In the second part, we discuss different strategies to optimize radiation dose and image quality at CT, with a focus on the musculoskeletal system and the use of novel iterative reconstruction techniques.