1000 resultados para sulphur deposition
Resumo:
Fabrication of a thin praseodymium oxide film is of great technological interest in sensor, semiconducting, and ceramic industries. It is shown for the first time that an ultrathin layer of praseodymium oxide can be deposited on tin-doped indium oxide surface (ITO) by applying a negative sweeping voltage (cathodic electrodeposition) to the aqueous solution containing Pr(NO3)(3) and H2O2 using cyclic voltammetry, followed by annealing the film at 500 S C for 1 h. X-ray diffraction suggested that the predominant phase of the film is Pr6O11 and atomic force microscopy and scanning electron microscopy characterizations indicated that this film is assembled with a monolayer coverage of spherical praseodymium oxide nanoparticles packed closely on the ITO surface. AC impedance measurements of the thin Pr6O11 film on ITO also revealed that the composite material displays a much higher electrical conductivity compared to the pure ITO. As a result, the material could suitably be used as a new chemical sensor. (c) 2006 The Electrochemical Society.
Resumo:
Praseodymium oxide as a thin film of controllable layer is known to display many unique physiochemical properties, which can be useful to ceramic, semiconductive and sensor industries. Here in this short paper, we describe a new chemical method of depositing praseodymium oxide on tin-doped indium oxide (ITO) surface using a layer-by-layer approach. The process is carried out by dipping the ITO in solutions of adsorbable polycationic chitosan and alkaline praseodymium hydroxide Pr(OH)(3) alternatively in order to build up the well-defined multi-layers. XRD suggests that the predominant form of the oxide is Pr6O11, obtained after heat treatment of the deposited ITO in static air at 500 degrees C. Microscopic studies including AFM, TEM and SEM indicate that the deposited oxide particles are uniform in size and shape (cylindrical), mesoporous and the thickness of the film can be controlled. AC impedance measurements of the deposited materials also reveal that the oxide layers display a high electrical conductivity hence suitable for sensor uses. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Irreversible binding of key flavour disulphides to ovalbumin has been shown previously to occur in model systems. The extent of binding is determined by the availability of the sulphydryl groups to participate in disulphide exchange, influenced either by pH, or the state of the protein (native or heat-denatured). In this study, two further proteins, one with sulphydryl groups available in the native state (beta-lactoglobulin) and one with no sulphydryl groups in the native state (lysozyme) were used to confirm this hypothesis. When the investigation was extended to real food systems, a similar effect was shown when a commercial meat flavouring containing disulphides was added to heat-denatured ovalbumin. Furthermore, comparison of the volatiles generated from onions, cooked either alone, or in the presence of meat, showed a significant reduction of key onion-derived disulphides when cooked in the presence of meat, and an even greater reduction of trisulphides. These findings may have implications for consumer acceptance of food products; where these compounds are used as flavourings or where they occur naturally.
Resumo:
Microcrystalline cellulose (MCC) and cross-linked polyvinylpyrrolidone (PVP-CL) were examined as polymeric carriers to support amorphous ibuprofen (IB). Drug/cartier systems were prepared as physical mixes, and drug was loaded onto the polymers by hot mix and solvent deposition methods. The systems were examined using differential scanning calorimetry (DSC), X-ray powder diffractometry (XRD) and by dissolution testing. PVP-CL reduced drug crystallinity more than MCC and, surprisingly, even very simple mixing of ibuprofen with PVP-CL induced disordering of the drug. Increased ibuprofen dissolution rates were achieved with both polymers, in the order of solvent deposition > hot mixes > physical mixes. The increased dissolution rates could be attributed to a combination of faster dissolution from amorphous ibuprofen, microcrystalline drug deposition on carrier surfaces and polymer swelling. However, no clear relationship was observed between ibuprofen dissolution rates (using first order, Higuchi or Hixson-Crowell relationships) and drug crystallinity. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
In the United Kingdom, as in other regions of Europe and North America, recent decreases in surface water sulphate concentrations, due to reduced sulphur emissions, have coincided with marked increases in dissolved organic carbon (DOC) concentrations. Since many of the compounds comprising DOC are acidic, the resulting increases in organic acidity may have the potential to offset the benefits of a decrease in mineral (sulphate) acidity. To test this, we used a triprotic model of organic acid dissociation to estimate the proportional organic acid buffering of reduced mineral acidity as measured in the 22 lakes and streams monitored by the UK Acid Waters Monitoring Network. For an average non-marine sulphate decrease of 30 μeq l− 1 over 15 years from 1988–2003, we estimate that around 28% was counterbalanced by rising strong organic acids, 20% by rising alkalinity (partly attributable to an increase in weak organic acids), 11% by falling inorganic aluminium and 41% by falling non-marine base cations. The situation is complicated by a concurrent decrease in marine ion concentrations, and the impact this may have had on both DOC and acidity, but results clearly demonstrate that organic acid increases have substantially limited the amount of recovery from acidification (in terms of rising alkalinity and falling aluminium) that have resulted from reducing sulphur emissions. The consistency and magnitude of sulphate and organic acid changes are consistent with a causal link between the two, possibly due to the effects of changing acidity, ionic strength and aluminium concentrations on organic matter solubility. If this is the case, then organic acids can be considered effective but partial buffers to acidity change in organic soils, and this mechanism needs to be considered in assessing and modelling recovery from acidification, and in defining realistic reference conditions. However, large spatial variations in the relative magnitude of organic acid and sulphate changes, notably for low-deposition sites in northwestern areas where organic acid increases apparently exceed non-marine sulphate decreases, suggest that additional factors, such as changes in sea-salt deposition and climatic factors, may be required to explain the full magnitude of DOC increases in UK surface waters.
Resumo:
Much uncertainty still exists regarding the relative importance of organic acids in relation to acid deposition in controlling the acidity of soil and surface waters. This paper contributes to this debate by presenting analysis of seasonal variations in atmospheric deposition, soil solution and stream water chemistry for two UK headwater catchments with contrasting soils. Acid neutralising capacity (ANC), dissolved organic carbon (DOC) concentrations and the Na:Cl ratio of soil and stream waters displayed strong seasonal patterns with little seasonal variation observed in soil water pH. These patterns, plus the strong relationships between ANC, Cl and DOC, suggest that cation exchange and seasonal changes in the production of DOC and seasalt deposition are driving a shift in the proportion of acidity attributable to strong acid anions, from atmospheric deposition, during winter to predominantly organic acids in summer.
Influence of drought-induced acidification on the mobility of dissolved organic carbon in peat soils
Resumo:
A strong relationship between dissolved organic carbon (DOC) and sulphate (SO42−) dynamics under drought conditions has been revealed from analysis of a 10-year time series (1993–2002). Soil solution from a blanket peat at 10 cm depth and stream water were collected at biweekly and weekly intervals, respectively, by the Environmental Change Network at Moor House-Upper Teesdale National Nature Reserve in the North Pennine uplands of Britain. DOC concentrations in soil solution and stream water were closely coupled, displaying a strong seasonal cycle with lowest concentrations in early spring and highest in late summer/early autumn. Soil solution DOC correlated strongly with seasonal variations in soil temperature at the same depth 4-weeks prior to sampling. Deviation from this relationship was seen, however, in years with significant water table drawdown (>−25 cm), such that DOC concentrations were up to 60% lower than expected. Periods of drought also resulted in the release of SO42−, because of the oxidation of inorganic/organic sulphur stored in the peat, which was accompanied by a decrease in pH and increase in ionic strength. As both pH and ionic strength are known to control the solubility of DOC, inclusion of a function to account for DOC suppression because of drought-induced acidification accounted for more of the variability of DOC in soil solution (R2=0.81) than temperature alone (R2=0.58). This statistical model of peat soil solution DOC at 10 cm depth was extended to reproduce 74% of the variation in stream DOC over this period. Analysis of annual budgets showed that the soil was the main source of SO42− during droughts, while atmospheric deposition was the main source in other years. Mass balance calculations also showed that most of the DOC originated from the peat. The DOC flux was also lower in the drought years of 1994 and 1995, reflecting low DOC concentrations in soil and stream water. The analysis presented in this paper suggests that lower concentrations of DOC in both soil and stream waters during drought years can be explained in terms of drought-induced acidification. As future climate change scenarios suggest an increase in the magnitude and frequency of drought events, these results imply potential for a related increase in DOC suppression by episodic acidification.
Resumo:
Lack of sulphur nutrition during potato cultivation has been shown to have profound effects on tuber composition, affecting in particular the concentrations of free asparagine, other amino acids and sugars. This is important because free asparagine and sugars react at high temperatures to form acrylamide, a suspect carcinogen. Free amino acids and sugars also form a variety of other compounds associated with colour and flavour. In this study the volatile aroma compounds formed in potato flour heated at 180 °C for 20 min were compared for three varieties of potato grown, with and without sulphur fertiliser. Approximately 50 compounds were quantified in the headspace extracts of the heated flour, of which over 40 were affected by sulphur fertilisation and/or variety. Many of the 41 compounds found at higher concentrations in the sulphur-deficient flour were Strecker aldehydes and compounds formed from their condensation, whereas only one compound, benzaldehyde, behaved in the same way as did acrylamide and was found at higher concentrations in the sulphur-sufficient flour. The reasons for these effects are discussed.
Resumo:
Dissolved organic carbon (DOC) concentrations have been rising in streams and lakes draining catchments with organic soils across Northern Europe. These increases have shown a correlation with decreased sulphate and chloride concentrations. One hypothesis to explain this phenomenon is that these relationships are due an increased in DOC release from soils to freshwaters, caused by a decline in pollutant sulphur and sea-salt deposition. We carried out controlled deposition experiments in the laboratory on intact peat and organomineral O-horizon cores to test this hypothesis. Preliminary data showed a clear correlation between the change in soil water pH and change in DOC concentrations, however uncertainty still remains about whether this is due to changes in biological activity or chemical solubility.