996 resultados para subconscious perception


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied patient PB, who, after an electric shock that led to vascular insufficiency, became virtually blind, although he retained a capacity to see colors consciously. For our psychophysical studies, we used a simplified version of the Land experiments [Land, E. (1974) Proc. R. Inst. G. B. 47, 23–58] to learn whether color constancy mechanisms are intact in him, which amounts to learning whether he can assign a constant color to a surface in spite of changes in the precise wavelength composition of the light reflected from that surface. We supplemented our psychophysical studies with imaging ones, using functional magnetic resonance, to learn something about the location of areas that are active in his brain when he perceives colors. The psychophysical results suggested that color constancy mechanisms are severely defective in PB and that his color vision is wavelength-based. The imaging results showed that, when he viewed and recognized colors, significant increases in activity were restricted mainly to V1-V2. We conclude that a partly defective color system operating on its own in a severely damaged brain is able to mediate a conscious experience of color in the virtually total absence of other visual abilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In subjects suffering from early onset strabismus, signals conveyed by the two eyes are not perceived simultaneously but in alternation. We exploited this phenomenon of interocular suppression to investigate the neuronal correlate of binocular rivalry in primary visual cortex of awake strabismic cats. Monocularly presented stimuli that were readily perceived by the animal evoked synchronized discharges with an oscillatory patterning in the γ-frequency range. Upon dichoptic stimulation, neurons responding to the stimulus that continued to be perceived increased the synchronicity and the regularity of their oscillatory patterning while the reverse was true for neurons responding to the stimulus that was no longer perceived. These differential changes were not associated with modifications of discharge rate, suggesting that at early stages of visual processing the degree of synchronicity rather than the amplitude of responses determines which signals are perceived and control behavioral responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two and a half millennia ago Pythagoras initiated the scientific study of the pitch of sounds; yet our understanding of the mechanisms of pitch perception remains incomplete. Physical models of pitch perception try to explain from elementary principles why certain physical characteristics of the stimulus lead to particular pitch sensations. There are two broad categories of pitch-perception models: place or spectral models consider that pitch is mainly related to the Fourier spectrum of the stimulus, whereas for periodicity or temporal models its characteristics in the time domain are more important. Current models from either class are usually computationally intensive, implementing a series of steps more or less supported by auditory physiology. However, the brain has to analyze and react in real time to an enormous amount of information from the ear and other senses. How is all this information efficiently represented and processed in the nervous system? A proposal of nonlinear and complex systems research is that dynamical attractors may form the basis of neural information processing. Because the auditory system is a complex and highly nonlinear dynamical system, it is natural to suppose that dynamical attractors may carry perceptual and functional meaning. Here we show that this idea, scarcely developed in current pitch models, can be successfully applied to pitch perception.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anatomical, physiological, and lesion data implicate multiple cortical regions in the complex experience of pain. These regions include primary and secondary somatosensory cortices, anterior cingulate cortex, insular cortex, and regions of the frontal cortex. Nevertheless, the role of different cortical areas in pain processing is controversial, particularly that of primary somatosensory cortex (S1). Human brain-imaging studies do not consistently reveal pain-related activation of S1, and older studies of cortical lesions and cortical stimulation in humans did not uncover a clear role of S1 in the pain experience. Whereas studies from a number of laboratories show that S1 is activated during the presentation of noxious stimuli as well as in association with some pathological pain states, others do not report such activation. Several factors may contribute to the different results among studies. First, we have evidence demonstrating that S1 activation is highly modulated by cognitive factors that alter pain perception, including attention and previous experience. Second, the precise somatotopic organization of S1 may lead to small focal activations, which are degraded by sulcal anatomical variability when averaging data across subjects. Third, the probable mixed excitatory and inhibitory effects of nociceptive input to S1 could be disparately represented in different experimental paradigms. Finally, statistical considerations are important in interpreting negative findings in S1. We conclude that, when these factors are taken into account, the bulk of the evidence now strongly supports a prominent and highly modulated role for S1 cortex in the sensory aspects of pain, including localization and discrimination of pain intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

What is the role of selective attention in visual perception? Before answering this question, it is necessary to differentiate between attentional mechanisms that influence the identification of a stimulus from those that operate after perception is complete. Cognitive neuroscience techniques are particularly well suited to making this distinction because they allow different attentional mechanisms to be isolated in terms of timing and/or neuroanatomy. The present article describes the use of these techniques in differentiating between perceptual and postperceptual attentional mechanisms and then proposes a specific role of attention in visual perception. Specifically, attention is proposed to resolve ambiguities in neural coding that arise when multiple objects are processed simultaneously. Evidence for this hypothesis is provided by two experiments showing that attention—as measured electrophysiologically—is allocated to visual search targets only under conditions that would be expected to lead to ambiguous neural coding.