994 resultados para stance phase
Resumo:
We demonstrate the growth of high quality single phase films of VO2(A, B, and M) on SrTiO3 substrate by controlling the vanadium arrival rate (laser frequency) and oxidation of the V atoms. A phase diagram has been developed (oxygen pressure versus laser frequency) for various phases of VO2 and their electronic properties are investigated. VO2(A) phase is insulating VO2(B) phase is semi-metallic, and VO2(M) phase exhibits a metal-insulator transition, corroborated by photoelectron spectroscopic studies. The ability to control the growth of various polymorphs opens up the possibility for novel (hetero) structures promising new device functionalities. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Resumo:
In this study, a unique method was adopted to design porous membranes through crystallization induced phase separation in PVDF/PMMA (poly(vinylidene fluoride)/poly(methyl methacrylate)) blends. By etching out PMMA, which segregates either in the interlamellar and/or in the interspherulitic regions of the blends, nanoporous hierarchical structures can be derived. Different nanoparticles like titanium dioxide (TiO2), silver nanoparticle (Ag) decorated carbon nanotubes (Ag-CNTs), TiO2 decorated CNTs (TiO2-CNTs), Ag decorated TiO2 (Ag-TiO2) and Ag-TiO2 decorated CNTs (Ag@TiO2-CNTs) were synthesized and melt mixed with 80/20 PVDF/PMMA blends to render antibacterial activity to the membranes. Scanning electron microscopy (SEM) was used to study the crystalline morphology of the membranes. A significant improvement in the trans-membrane flux was obtained in the blends with Ag@TiO2 decorated CNTs as compared to the membranes derived from the neat blends, which can be attributed to the interconnected pores in these membranes. Both qualitative and quantitative studies of antifouling and antibacterial activity (using E. coli as a model bacterium) were performed using the standard plate count method. SEM micrographs clearly showed that the antifouling activity of the membranes was improved with addition of Ag@TiO2-CNTs. In the quantitative standard plate count method, the bacterial colony significantly decreased with the addition of Ag@TiO2-CNTs as against neat blends. This study opens a new avenue in the fabrication of polymer blend based membranes for water filtration.
Resumo:
For decades it has been a well-known fact that among the few ferroelectric compounds in the perovskite family, namely, BaTiO3, KNbO3, PbTiO3, and Na1/2Bi1/2TiO3, the dielectric and piezoelectric properties of BaTiO3 are considerably higher than the others in polycrystalline form at room temperature. Further, similar to ferroelectric alloys exhibiting morphotropic phase boundary, single crystals of BaTiO3 exhibit anomalously large piezoelectric response when poled away from the direction of spontaneous polarization at room temperature. These anomalous features in BaTiO3 remained unexplained so far from the structural standpoint. In this work, we have used high-resolution synchrotron x-ray powder diffraction, atomic resolution aberration-corrected transmission electron microscopy, in conjunction with a powder poling technique, to reveal that at 300 K (i) the equilibrium state of BaTiO3 is characterized by coexistence of metastable monoclinic Pm and orthorhombic (Amm2) phases along with the tetragonal phase, and (ii) strong electric field switches the polarization direction from the 001] direction towards the 101] direction. These results suggest that BaTiO3 at room temperature is within an instability regime, and that this instability is the fundamental factor responsible for the anomalous dielectric and piezoelectric properties of BaTiO3 as compared to the other homologous ferroelectric perovskite compounds at room temperature. Pure BaTiO3 at room temperature is therefore more akin to lead-based ferroelectric alloys close to the morphotropic phase boundary where polarization rotation and field induced ferroelectric-ferroelectric phase transformations play a fundamental role in influencing the dielectric and piezoelectric behavior.
Resumo:
Electromagnetic Interference (EMI) noise is one of the major issues during the design of the grid-tied power converters. Presence of high dv/dt in Common Mode (CM) voltage, excites the parasitic capacitances and causes injection of narrow peaky current to ground. This results in high EMI noise level. A topology consisting of a single phase PWM-rectifier with LCL filter, utilising bipolar PWM method is proposed which reduces the EMI noise level by more than 30dB. This filter topology is shown to be insensitive to the switching delays between the legs of the inverter. The proposed topology eliminates high dv/dt from the dc-bus CM voltage by making it sinusoidal. Hence, the high frequency CM current injection to ground is minimized.