993 resultados para split-plot design


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cada instante surgem novas soluções de aprendizagem, resultado da evolução tecnológica constante com que nos deparamos. Estas inovações potenciam uma transmissão do conhecimento entre o educador e o educando cada vez mais simplificada, rápida e eficiente. Alguns destes avanços têm em vista a centralização no aluno, através da delegação de tarefas e da disponibilização de conteúdos, investindo na autonomia e na auto-aprendizagem, de modo a que cada aluno crie o seu próprio método de estudo, e evolua gradualmente, com o acompanhamento de um professor ou sistema autónomo de aprendizagem. Com esta investigação, é pretendido fazer um estudo dos métodos de aprendizagem ao longo do tempo até à actualidade, enumerando algumas das ferramentas utilizadas no processo de aprendizagem, indicando os vários benefícios, bem como contrapartidas do uso das mesmas. Será também analisado um caso de estudo baseado numa destas ferramentas, descrevendo o seu funcionamento e modo de interacção entre as várias entidades participantes, apresentando os resultados obtidos. O caso de estudo consistirá na criação de um cenário específico de aprendizagem, na área da saúde, analisando-o em diferentes contextos, e evidenciando as características e benefícios de cada ambiente analisado, no processo aprendizagem. Será então demonstrado como é possível optimizar os processos de aprendizagem, utilizando ferramentas de informatização e automatização desses mesmos processos, de forma tornar o processo de ensino mais célere e eficaz, num ambiente controlável, e com as funcionalidades que a tecnologia actual permite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microarray allow to monitoring simultaneously thousands of genes, where the abundance of the transcripts under a same experimental condition at the same time can be quantified. Among various available array technologies, double channel cDNA microarray experiments have arisen in numerous technical protocols associated to genomic studies, which is the focus of this work. Microarray experiments involve many steps and each one can affect the quality of raw data. Background correction and normalization are preprocessing techniques to clean and correct the raw data when undesirable fluctuations arise from technical factors. Several recent studies showed that there is no preprocessing strategy that outperforms others in all circumstances and thus it seems difficult to provide general recommendations. In this work, it is proposed to use exploratory techniques to visualize the effects of preprocessing methods on statistical analysis of cancer two-channel microarray data sets, where the cancer types (classes) are known. For selecting differential expressed genes the arrow plot was used and the graph of profiles resultant from the correspondence analysis for visualizing the results. It was used 6 background methods and 6 normalization methods, performing 36 pre-processing methods and it was analyzed in a published cDNA microarray database (Liver) available at http://genome-www5.stanford.edu/ which microarrays were already classified by cancer type. All statistical analyses were performed using the R statistical software.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Box–Behnken factorial design coupled with surface response methodology was used to evaluate the effects of temperature, pH and initial concentration in the Cu(II) sorption process onto the marine macroalgae Ascophyllum nodosum. The effect of the operating variables on metal uptake capacitywas studied in a batch system and a mathematical model showing the influence of each variable and their interactions was obtained. Study ranges were 10–40ºC for temperature, 3.0–5.0 for pH and 50–150mgL−1 for initial Cu(II) concentration. Within these ranges, the biosorption capacity is slightly dependent on temperature but markedly increases with pH and initial concentration of Cu(II). The uptake capacities predicted by the model are in good agreement with the experimental values. Maximum biosorption capacity of Cu(II) by A. nodosum is 70mgg−1 and corresponds to the following values of those variables: temperature = 40ºC, pH= 5.0 and initial Cu(II) concentration = 150mgL−1.