995 resultados para sludge reduction
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
Dissertation to obtain the degree of Master in Chemical and Biochemical Engineering
Resumo:
Phosphorus (P) is becoming a scarce element due to the decreasing availability of primary sources. Therefore, recover P from secondary sources, e.g. waste streams, have become extremely important. Sewage sludge ash (SSA) is a reliable secondary source of P. The use of SSAs as a direct fertilizer has very restricted legislation due to the presence of inorganic contaminants. Furthermore, the P present in SSAs is not in a plant-available form. The electrodialytic (ED) process is one of the methods under development to recover P and simultaneously remove heavy metals. The present work aimed to optimize the P recovery through a 2 compartment electrodialytic cell. The research was divided in three independent phases. In the first phase, ED experiments were carried out for two SSAs from different seasons, varying the duration of the ED process (2, 4, 6 and 9 days). During the ED treatment the SSA was suspended in distilled water in the anolyte, which was separated from the catholyte by a cation exchange membrane. From both ashes 90% of P was successfully extracted after 6 days of treatment. Regarding the heavy metals removal, one of the SSAs had a better removal than the other. Therefore, it was possible to conclude that SSAs from different seasons can be submitted to ED process under the same parameters. In the second phase, the two SSAs were exposed to humidity and air prior to ED, in order to carbonate them. Although this procedure was not successful, ED experiments were carried out varying the duration of the treatment (2 and 6 days) and the period of air exposure that SSAs were submitted to (7, 14 and 30 days). After 6 days of treatment and 30 days of air exposure, 90% of phosphorus was successfully extracted from both ashes. No differences were identified between carbonated and non-carbonated SSAs. Thus, SSAs that were exposed to the air and humidity, e.g. SSAs stored for 30 days in an open deposit, can be treated under the same parameters as the SSAs directly collected from the incineration process. In the third phase, ED experiments were carried out during 6 days varying the stirring time (0, 1, 2 and 4 h/day) in order to investigate if energy can be saved on the stirring process. After 6 days of treatment and 4 h/day stirring, 80% and 90% of P was successfully extracted from SSA-A and SSA-B, respectively. This value is very similar to the one obtained for 6 days of treatment stirring 24 h/day.
Resumo:
Phosphorus is a macronutrient essential to life which comes from phosphate rock, a non-renewable resource. Sewage sludge from wastewater treatment plants (WWTP) is a secondary resource rich in phosphorus that can be valorized. However, organic compounds are detected in sewage sludge, due to its non-polar and hydrophobic character, being considered an environmental risk. The present dissertation aims to study the efficiency of the electrodialytic process (ED) when applied to sewage sludge aiming phosphorus recovery and organic contaminants removal. Four organic compounds were analyzed: 17α-ethynylestradiol (EE2), bisphenol A (BPA), caffeine (Caf) and oxybenzone (MBPh). The experiments took place in an ED cell with two compartments and an anion exchange membrane, with the sludge in the cathode compartment. The experiments were carried out for three days with spiked sewage sludge (six assays). One control experiment was done without current, three experiments were carried out applying a constant current of 50, 75, and 100 mA and two experiments were carried out applying sequential currents: 50 mA, 75 mA and 100 mA and the opposite (100-75-50 mA). A qualitative and quantitative analysis of microorganisms existing in the samples was also done. At the end, the pH increased in the sewage sludge favoring phosphorus recovery. In terms of phosphorus, the highest recovery was achieved in the experiment run with 100 mA, where 70.3±2.0% of total phosphorus was recovered in the electrolyte. Generally, compounds degradation was favored by the current. Caf and MBPh achieved degradation percentages of 96.2±0.2% and 84.8±1.3%, respectively, in 100 mA assay. EE2 (83.1±1.7%) and BPA (91.8±4.6%) degradations were favored by 50 mA current. A total of 35 taxa from four different groups were identified, totalizing between 81,600-273,000 individuals per gram of initial sludges. After ED, microbial community population decreased between 47-98%. Arcella gibbosa represented 61% of the total observed organisms and revealed to be more tolerant to medium changes.
Resumo:
The main goal of training activities is to improve motor performance. After strenuous workouts, it is physiological to experience fatigue, which relieves within two weeks, and then induce an improvement in motor capacities. An overtraining syndrome is diagnosed when fatigue is postponed beyond two weeks, and affects mainly endurance athletes. It is a condition of chronic fatigue, underperformance and an increased vulnerability to infection leading to recurrent infections. The whole observed spectrum of symptoms is physiological, psychological, endocrinogical and immunological. All play a role in the failure to recover. Monitoring of athletes activities helps to prevent the syndrome with days with no sports. Rest, patience and empathy are the only ways of treatment options.