995 resultados para self-injection
Resumo:
Peripherally heterofunctionalized hyperbranched polymers (HBPs) undergo immiscibility-driven self-segregation of the outer segments to form Janus molecular entities (Macromolecules 2012, 45, 2348). In HBPs prepared via AB2 type self-condensation, single-step peripheral heterofunctionalization would lead to random distribution of the two types of terminal units, namely, homofunctionalized (homo-T) and heterofunctionalized (hetero-T) termini. Here, we examine the role of such hetero-T units on the self-segregation of heterofunctionalized pseudodendritic hyperbranched polydithioacetals. Three different heterofunctionalized HB dithioacetals bearing roughly 50 mol % each of docsyl (C-22) and MPEG-350 chains at the periphery were prepared: one of them carried a statistical distribution of homo-T and hetero-T units, and the other carried only two types of homo-T (-TR1R1 and -TR2R2) termini, whereas the third carried largely hetero-T (-TR1R2) termini. Careful examination of DSC and SAXS data reveals that the self-segregation is most effective in HBPs devoid of hetero-T units; interestingly, however, it also showed that randomly heterofunctionalized HBPs self-segregated nearly as effectively.
Component Selection in the Self-Assembly of Palladium(II) Nanocages and Cage-to-Cage Transformations
Resumo:
Dynamic supramolecular systems involving a tetratopic palladium(II) acceptor and three different pyridine-and imidazole-based donors have been used for self-selection by a synergistic effect of morphological information and coordination ability of ligands through specific coordination interactions. Three different cages were first synthesized by two-component self-assembly of individual donor and acceptor. When all four components were allowed to interact in a reaction mixture, only one out of three cages was isolated. The preferential binding affinity towards a particular partner was also established by transforming a non-preferred cage into a preferred cage by interaction with the appropriate ligand. Computational studies further supported the fact that coordination interaction of imidazole moiety to Pd-II is enthalpically more preferred compared to pyridine, which drives the selection process. Analysis of crystal packing of both complexes indicated the presence of strong hydrogen bonds between nitrate and water molecules and also H-bonded 3D networks of water. Both complexes exhibit promising proton conductivity (10(-5) to ca. 10(-3) Scm(-1)) at ambient temperature under a relative humidity of circa 98% with low activation energy.
Resumo:
Two different soft-chemical, self-assembly-based solution approaches are employed to grow zinc oxide (ZnO) nanorods with controlled texture. The methods used involve seeding and growth on a substrate. Nanorods with various aspect ratios (1-5) and diameters (15-65 nm) are grown. Obtaining highly oriented rods is determined by the way the substrate is mounted within the chemical bath. Furthermore, a preheat and centrifugation step is essential for the optimization of the growth solution. In the best samples, we obtain ZnO nanorods that are almost entirely oriented in the (002) direction; this is desirable since electron mobility of ZnO is highest along this crystallographic axis. When used as the buffer layer of inverted organic photovoltaics (I-OPVs), these one-dimensional (1D) nanostructures offer: (a) direct paths for charge transport and (b) high interfacial area for electron collection. The morphological, structural, and optical properties of ZnO nanorods are studied using scanning electron microscopy, X-ray diffraction, and ultraviolet-visible light (UV-vis) absorption spectroscopy. Furthermore, the surface chemical features of ZnO films are studied using X-ray photoelectron spectroscopy and contact angle measurements. Using as-grown ZnO, inverted OPVs are fabricated and characterized. For improving device performance, the ZnO nanorods are subjected to UV-ozone irradiation. UV-ozone treated ZnO nanorods show: (i) improvement in optical transmission, (ii) increased wetting of active organic components, and (iii) increased concentration of Zn-O surface bonds. These observations correlate well with improved device performance. The devices fabricated using these optimized buffer layers have an efficiency of similar to 3.2% and a fill factor of 0.50; this is comparable to the best I-OPVs reported that use a P3HT-PCBM active layer.
Resumo:
We report DNA assisted self-assembly of polyamidoamine (PAMAM) dendrimers using all atom Molecular Dynamics (MD) simulations and present a molecular level picture of a DNA-linked PAMAM dendrimer nanocluster, which was first experimentally reported by Choi et al. (Nano Lett., 2004, 4, 391-397). We have used single stranded DNA (ssDNA) to direct the self-assembly process. To explore the effect of pH on this mechanism, we have used both the protonated (low pH) and nonprotonated (high pH) dendrimers. In all cases studied here, we observe that the DNA strand on one dendrimer unit drives self-assembly as it binds to the complementary DNA strand present on the other dendrimer unit, leading to the formation of a DNA-linked dendrimer dimeric complex. However, this binding process strongly depends on the charge of the dendrimer and length of the ssDNA. We observe that the complex with a nonprotonated dendrimer can maintain a DNA length dependent inter-dendrimer distance. In contrast, for complexes with a protonated dendrimer, the inter-dendrimer distance is independent of the DNA length. We attribute this observation to the electrostatic complexation of a negatively charged DNA strand with the positively charged protonated dendrimer.
Resumo:
The electronic structure and spectral properties of hexagonal NiS have been studied in the high temperature paramagnetic phase and low temperature anti-ferromagnetic phase. The calculations have been performed using charge self-consistent density-functional theory in local density approximation combined with dynamical mean-field theory (LDA+DMFT). The photoemission spectra (PES) and optical properties have been computed and compared with the experimental data. Our results show that the dynamical correlation effects are important to understand the spectral and optical properties of NiS. These effects have been analyzed in detail by means of the computed real and imaginary part of the self-energy.