998 resultados para script processing
Resumo:
Previous work has suggested that there are specific deficits in dorsal stream processing in a variety of developmental disorders. Prader-Willi syndrome (PWS) is associated with two main genetic subtypes, deletion and disomy. Relative strengths in visual processing are shown in PWS, although these strengths may be specific to the deletion subtype. We investigated visual processing in PWS using an adapted Simon task which contrasted location (dorsal stream) and shape identity (ventral stream) tasks. Compared to a group of typically developing children, children with PWS deletion showed a greater degree of impairment in the dorsal stream task than in the ventral stream task, a pattern similar to that shown in a group of boys with Fragile-X syndrome. When matched on a measure of non-verbal ability, children with PWS disomy showed the opposite pattern with better performance in the location compared to the shape task, although these task performance asymmetries may have been linked to executive control processes. It is proposed that children with PWS deletion show a relative strength in visual processing in the ventral stream along with a specific deficit in dorsal stream processing. In contrast, children with PWS disomy show neither effect. (C) 2009 Published by Elsevier Ltd.
Resumo:
‘Temporally urgent’ reactions are extremely rapid, spatially precise movements that are evoked following discrete stimuli. The involvement of primary motor cortex (M1) and its relationship to stimulus intensity in such reactions is not well understood. Continuous theta burst stimulation (cTBS) suppresses focal regions of the cortex and can assess the involvement of motor cortex in speed of processing. The primary objective of this study was to explore the involvement of M1 in speed of processing with respect to stimulus intensity. Thirteen healthy young adults participated in this experiment. Behavioral testing consisted of a simple button press using the index finger following median nerve stimulation of the opposite limb, at either high or low stimulus intensity. Reaction time was measured by the onset of electromyographic activity from the first dorsal interosseous (FDI) muscle of each limb. Participants completed a 30 min bout of behavioral testing prior to, and 15 min following, the delivery of cTBS to the motor cortical representation of the right FDI. The effect of cTBS on motor cortex was measured by recording the average of 30 motor evoked potentials (MEPs) just prior to, and 5 min following, cTBS. Paired t-tests revealed that, of thirteen participants, five demonstrated a significant attenuation, three demonstrated a significant facilitation and five demonstrated no significant change in MEP amplitude following cTBS. Of the group that demonstrated attenuated MEPs, there was a biologically significant interaction between stimulus intensity and effect of cTBS on reaction time and amplitude of muscle activation. This study demonstrates the variability of potential outcomes associated with the use of cTBS and further study on the mechanisms that underscore the methodology is required. Importantly, changes in motor cortical excitability may be an important determinant of speed of processing following high intensity stimulation.
Resumo:
In the current investigation, rubber/clay nanocomposites were prepared by two different methods using hydrogenated nitrile butadiene rubber (HNBR) and the organoclay namely Cloisite 15A (C15A). A new novel approach involving swelling of C15A by ulltrasonication in HNBR solution has been carried out for improving the exfoliation and compatibilization of organoclays with HNBR matrix. With the addition of 5phr of clay, the elongation at break and tear strength improved by 16% and 24% respectively. The effect of coupling agents namely amino functional silane and tetrasulfido silane on the nanocomposites have been investigated. The elongation at break and tear strength improved by 46% and 77% respectively with the use of silanes. The improvement in the mechanical properties attributes to improved interaction between the organoclays and HNBR matrix. This interaction has been studied by X-ray diffraction and transmission electron microscope. Pre-dispersion technique clearly suggests very good improvement in the dispersion and properties due to better filler-rubber compatibility. © 2010 American Institute of Physics.
Resumo:
This paper reports image analysis methods that have been developed to study the microstructural changes of non-wovens made by the hydroentanglement process. The validity of the image processing techniques has been ascertained by applying them to test images with known properties. The parameters in preprocessing of the scanning electron microscope (SEM) images used in image processing have been tested and optimized. The fibre orientation distribution is estimated using fast Fourier transform (FFT) and Hough transform (HT) methods. The results obtained using these two methods are in good agreement. The HT method is more demanding in computational time compared with the Fourier transform (FT) method. However, the advantage of the HT method is that the actual orientation of the lines can be concluded directly from the result of the transform without the need for any further computation. The distribution of the length of the straight fibre segments of the fabrics is evaluated by the HT method. The effect of curl of the fibres on the result of this evaluation is shown.
Resumo:
The image analysis techniques developed in Part 1 to study microstructural changes in non-woven fabrics are applied to measure the fibre orientation distribution and fibre length distribution of hydroentangled fabrics. The results are supported by strength and modulus measurements using samples from the same fabrics. It is shown that the techniques developed can successfully be used to assess the degree of entanglement of hydroentangled fabrics regardless of their thickness.