1000 resultados para reticulated vitreous carbon
Resumo:
We present a general catalyst design to synthesize ultrahigh density, aligned forests of carbon nanotubes by cyclic deposition and annealing of catalyst thin films. This leads to nanotube forests with an area density of at least 10(13) cm(-2), over 1 order of magnitude higher than existing values, and close to the limit of a fully dense forest. The technique consists of cycles of ultrathin metal film deposition, annealing, and immobilization. These ultradense forests are needed to use carbon nanotubes as vias and interconnects in integrated circuits and thermal interface materials. Further density increase to 10(14) cm(-2) by reducing nanotube diameter is possible, and it is also applicable to nanowires.
Resumo:
This paper reviews work on low temperature growth of carbon nanotubes, on Si, on plastic, on carbon cloth, using sputtered and colloidal catalysts, and with nano-imprinted patterning. © 2005 Materials Research Society.
Resumo:
We present the fabrication and high frequency characterization of a capacitive nanoelectromechanical system (NEMS) switch using a dense array of horizontally aligned single-wall carbon nanotubes (CNTs). The nanotubes are directly grown onto metal layers with prepatterned catalysts with horizontal alignment in the gas flow direction. Subsequent wetting-induced compaction by isopropanol increases the nanotube density by one order of magnitude. The actuation voltage of 6 V is low for a NEMS device, and corresponds to CNT arrays with an equivalent Young's modulus of 4.5-8.5 GPa, and resistivity of under 0.0077 Ω·cm. The high frequency characterization shows an isolation of -10 dB at 5 GHz. © 2010 American Institute of Physics.
Resumo:
It has been reported recently that single carbon nanotubes were attached to AFM tips to act as nanotweezers. In order to investigate its stability, a vertical single-walled carbon nanotube (SWCNT) under its own weight is studied in this paper. The lower end of the carbon nanotube is clamped. Firstly the governing dimensionless numbers are derived by dimensional analysis. Then the theoretical analysis based on an elastic column model is carried out. Two ratios, I.e., the ratio of half wall thickness to radius (t=R) and the ratio of gravity to elastic resilience ($\rho$gR=E), and their influences on the ratio of critical length to radius are discussed. It is found that the relationship between the critical ratio of altitude to radius and ratio of half thickness to radius is approximately linear. As the dimensionless number $\rho$gR=E increases, the compressive force per unit length (weight) becomes larger, thus critical ratio of altitude to radius must become smaller to maintain stability. At last the critical length of SWCNT is calculated. The results of this paper will be helpful for the stability design of nanotweezers-like nanostructures.