1000 resultados para pressurized flow
Resumo:
Semi-analytical expressions for the momentum flux associated with orographic internal gravity waves, and closed analytical expressions for its divergence, are derived for inviscid, stationary, hydrostatic, directionally-sheared flow over mountains with an elliptical horizontal cross-section. These calculations, obtained using linear theory conjugated with a third-order WKB approximation, are valid for relatively slowly-varying, but otherwise generic wind profiles, and given in a form that is straightforward to implement in drag parametrization schemes. When normalized by the surface drag in the absence of shear, a quantity that is calculated routinely in existing drag parametrizations, the momentum flux becomes independent of the detailed shape of the orography. Unlike linear theory in the Ri → ∞ limit, the present calculations account for shear-induced amplification or reduction of the surface drag, and partial absorption of the wave momentum flux at critical levels. Profiles of the normalized momentum fluxes obtained using this model and a linear numerical model without the WKB approximation are evaluated and compared for two idealized wind profiles with directional shear, for different Richardson numbers (Ri). Agreement is found to be excellent for the first wind profile (where one of the wind components varies linearly) down to Ri = 0.5, while not so satisfactory, but still showing a large improvement relative to the Ri → ∞ limit, for the second wind profile (where the wind turns with height at a constant rate keeping a constant magnitude). These results are complementary, in the Ri > O(1) parameter range, to Broad’s generalization of the Eliassen–Palm theorem to 3D flow. They should contribute to improve drag parametrizations used in global weather and climate prediction models.
Resumo:
This study reconstructs the depositional environments that accompanied both ice advance and ice retreat of the last British–Irish Ice Sheet in NE England during the Last Glacial Maximum, and proposes three regional ice-flow phases. The Late Devensian (29–22 cal. ka BP) Tyne Gap Ice Stream initially deposited the Blackhall Till Formation during shelf-edge glaciation (Phase I). This subglacial traction till comprises several related facies, including stratified and laminated diamictons, tectonites, and sand and gravel beds deposited both in subglacial canals and in proglacial streams. Eventually, stagnation of the Tyne Gap Ice Stream led to ice-marginal sedimentation in County Durham (Phase II). During the Dimlington Stadial (21 cal. ka BP), the North Sea Lobe advanced towards the coastline of N Norfolk. This resulted initially in sandur deposition (widespread, tabular sand and gravel; the Peterlee Sand and Gravel Formation; Phase II) and ultimately in deposition of the Horden Till Formation (Phase III), a massive subglacial till. As the North Sea Lobe overrode previous formations, it thrusted and stacked sediments in County Durham, and dammed proglacial lakes between the east-coast ice, the Pennine uplands and the remaining Pennine ice. The North Sea Lobe retreated after Heinrich Event 1 (16 ka). This study highlights the complexity of ice flow during the Late Devensian glaciation of NE England, with changing environmental and oceanic conditions forcing a mobile and sensitive ice sheet.
Resumo:
Here we describe general flow processes for the synthesis of alkyl and aryl azides, and the development of a new monolithic triphenylphosphine reagent, which provides a convenient format for the use of this versatile reagent in flow. The utility of these new tools was demonstrated by their application to a flow Staudinger aza-Wittig reaction sequence. Finally, a multistep aza-Wittig, reduction and purification flow process was designed, allowing access to amine products in an automated fashion.
Resumo:
The use of three orthogonally tagged phosphine reagents to assist chemical work-up via phase-switch scavenging in conjunction with a modular flow reactor is described. These techniques (acidic, basic and Click chemistry) are used to prepare various amides and tri-substituted guanidines from in situ generated iminophosphoranes.
Resumo:
The cycloaddition of acetylenes with azides to give the corresponding 1,4-disubstituted 1,2,3-triazoles is reported using immobilised reagents and scavengers in pre-packed glass tubes in a modular flow reactor.
Resumo:
The use of a mesofluidic flow reactor is described for performing Curtius rearrangement reactions of carboxylic acids in the presence of diphenylphosphoryl azide and trapping of the intermediate isocyanates with various nucleophiles.
Resumo:
The preparation and use of an azide-containing monolithic reactor is described for use in a flow chemistry device and in particular for conducting Curtius rearrangement reactions via acid chloride inputs.
Resumo:
A scalable method for the preparation of 4,5-disubstituted thiazoles and imidazoles as distinct regioisomeric products using a modular flow microreactor has been devised. The process makes use of microfluidic reaction chips and packed immobilized-reagent columns to effect bifurcation of the reaction pathway.
Resumo:
A general flow process for the multi-step assembly of peptides has been developed and this procedure has been used to successfully construct a series of Boc, Cbz and Fmoc N-protected dipeptides in excellent yields and purities, including an extension of the method to enable the preparation of a tripeptide derivative.