995 resultados para portal frame


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge maintenance is a major challenge for both knowledge management and the Semantic Web. Operating over the Semantic Web, there will be a network of collaborating agents, each with their own ontologies or knowledge bases. Change in the knowledge state of one agent may need to be propagated across a number of agents and their associated ontologies. The challenge is to decide how to propagate a change of knowledge state. The effects of a change in knowledge state cannot be known in advance, and so an agent cannot know who should be informed unless it adopts a simple ‘tell everyone – everything’ strategy. This situation is highly reminiscent of the classic Frame Problem in AI. We argue that for agent-based technologies to succeed, far greater attention must be given to creating an appropriate model for knowledge update. In a closed system, simple strategies are possible (e.g. ‘sleeping dog’ or ‘cheap test’ or even complete checking). However, in an open system where cause and effect are unpredictable, a coherent cost-benefit based model of agent interaction is essential. Otherwise, the effectiveness of every act of knowledge update/maintenance is brought into question.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bilateral corneal blindness represents a quarter of the total blind, world-wide. The artificial cornea in assorted forms, was developed to replace opaque non-functional corneas and to return sight in otherwise hopeless cases that were not amenable to corneal grafts; believed to be 2% of corneal blind. Despite technological advances in materials design and tissue engineering no artificial cornea has provided absolute, long-term success. Formidable problems exist, due to a combination of unpredictable wound healing and unmanageable pathology. To have a solid guarantee of reliable success an artificial cornea must possess three attributes: an optical window to replace the opaque cornea; a strong, long term union to surrounding ocular tissue; and the ability to induce desired host responses. A unique artificial cornea possesses all three functional attributes- the Osteo-odonto-keratoprosthesis (OOKP). The OOKP has a high success rate and can survive for up to twenty years, but it is complicated both in structure and in surgical procedure; it is expensive and not universally available. The aim of this project was to develop a synthetic substitute for the OOKP, based upon key features of the tooth and bone structure. In doing so, surgical complexity and biological complications would be reduced. Analysis of the biological effectiveness of the OOKP showed that the structure of bone was the most crucial component for implant retention. An experimental semi-rigid hydroxyapatite framework was fabricated with a complex bone-like architecture, which could be fused to the optical window. The first method for making such a framework, was pressing and sintering of hydroxyapatite powders; however, it was not possible to fabricate a void architecture with the correct sizes and uniformity of pores. Ceramers were synthesised using alternative pore forming methods, providing for improved mechanical properties and stronger attachment to the plastic optical window. Naturally occurring skeletal structures closely match the structural features of all forms of natural bone. Synthetic casts were fabricated using the replamineform process, of desirable natural artifacts, such as coral and sponges. The final method of construction by-passed ceramic fabrication in favour of pre-formed coral derivatives and focused on methods for polymer infiltration, adhesion and fabrication. Prototypes were constructed and evaluated; a fully penetrative synthetic OOKP analogue was fabricated according to the dimensions of the OOKP. Fabrication of the cornea shaped OOKP synthetic analogue was also attempted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis examines theoretically and experimentally the behaviour of a temporary end plate connection for an aluminium space frame structure, subjected to static loading conditions. Theoretical weld failure criterions are derived from basic fundamentals for both tensile and shear fillet welds. Direct account of weld penetration is taken by incorporating it into a more exact poposed weld model. Theoretical relationships between weld penetration and weld failure loads, failure planes and failure lengths are derived. Also, the variation in strength between tensile and shear fillet welds is shown to be dependent upon the extent of weld penetration achieved/ The proposed tensile weld failure theory is extended to predict the theoretical failure of the welds in the end plate space frame connection. A finite element analysis is conducted to verify the assumptions made for this theory. Experimental hardness and tensile tests are conducted to substantiate the extent and severity of the heat affected zone in aluminium alloy 6082-T6. Simple transverse and longitudinal fillet welded specimens of the same alloy, are tested to failure. These results together with those of other authors are compared to the theoretical predictions made by the proposed weld failure theories and by those made using Kamtekar's and Kato and Morita's failure equations, the -formula and BS 8118. Experimental tests are also conducted on the temporary space frame connection. The maximum stresses and displacements recorded are checked against results obtained from a finite element analysis of the connection. Failure predictions made by the proposed extended weld failure theory, are compared against the experimental results.