995 resultados para pollutant emission


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proton energy spectrum from photodissociation of the hydrogen molecular ion by short intense pulses of infrared light is calculated. The time-dependent Schrödinger equation is discretized and integrated. For few-cycle pulses one can resolve vibrational structure, arising from the experimental preparation of the molecular ion. We calculate the corresponding energy spectrum and analyse the dependence on the pulse time delay, pulse length and intensity of the laser for ? ~ 790 nm. We conclude that the proton spectrum is a sensitive probe of both the vibrational populations and phases, and allows us to distinguish between adiabatic and nonadiabatic dissociation. Furthermore, the sensitivity of the proton spectrum from H2+ is a practical means of calibrating the pulse. Our results are compared with recent measurements of the proton spectrum for 65 fs pulses using a Ti:Sapphire laser (? ~ 790 nm) including molecular orientation and focal-volume averaging. Integrating over the laser focal volume, for the intensity I ~ 3 × 1015 W cm-2, we find our results are in excellent agreement with these experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray emission from a comet was observed for the first time in 1996. One of the mechanisms believed to be contributing to this surprisingly strong emission is the interaction of highly charged solar wind ions with cometary gases. Reported herein are total absolute charge-exchange and normalized line-emission (X-ray) cross sections for collisions of high-charge state (+3 to +10) C, N, O, and Ne ions with the cometary species H2O and CO2. It is found that in several cases the double charge-exchange cross sections can be large, and in the case of C3+ they are equal to those for single charge exchange. Present results are compared to cross section values used in recent comet models. The importance of applying accurate cross sections, including double charge exchange, to obtain absolute line-emission intensities is emphasized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas temperature is of major importance in plasma based surface treatment, since the surface processes are strongly temperature sensitive. The spatial distribution of reactive species responsible for surface modification is also influenced by the gas temperature. Industrial applications of RF plasma reactors require a high degree of homogeneity of the plasma in contact with the substrate. Reliable measurements of spatially resolved gas temperatures are, therefore, of great importance. The gas temperature can be obtained, e.g. by optical emission spectroscopy (OES). Common methods of OES to obtain gas temperatures from analysis of rotational distributions in excited states do not include the population dynamics influenced by cascading processes from higher electronic states. A model was developed to evaluate this effect on the apparent rotational temperature that is observed. Phase resolved OES confirmed the validity of this model. It was found that cascading leads to higher apparent temperatures, but the deviation (~25 K) is relatively small and can be ignored in most cases. This analysis is applied to investigate axially and radially resolved temperature profiles in an inductively coupled hydrogen RF discharge.