995 resultados para polarized nuclear targets
Resumo:
Nuclear factor-kappaB (NF-kappaB) has been implicated in a number of malignancies and has been suggested to be a potential molecular target in the treatment of leukaemia. This study demonstrated the constitutive activation of NF-kappaB in human myeloid blasts and a clear correlation between NF-kappaB expression and in vitro cytoprotection. High NF-kappaB expression was found in many of the poor prognostic acute myeloid leukaemia (AML) subtypes, such as French-American-British classification M0 and M7, and the poor cytogenetic risk group. The in vitro effects of LC-1, a novel dimethylamino-parthenolide analogue, were assessed in 62 primary untreated AML samples. LC-1 was found to be cytotoxic to AML cells in a dose-dependent manner, mediated through the induction of apoptosis. The median drug concentration necessary to kill 50% of the cells was 4.5 micromol/l for AML cells, compared with 12.8 micromol/l for normal marrow cells. LC-1 was shown to reduce the five individual human NF-kappaB Rel proteins in a dose-dependent manner. The subsequent inhibition of many NF-kappaB-regulated cytokines was also demonstrated. Importantly, sensitivity to LC-1 was correlated with the basal NF-kappaB activity. Consequently, LC-1 treatment provides a proof of principle for the use of NF-kappaB inhibitors in the treatment of AML.
Resumo:
Shigella flexneri causes bacillary dysentery in humans. Essential to the establishment of the disease is the invasion of the colonic epithelial cells. Here we investigated the role of the lipopolysaccharide (LPS) O antigen in the ability of S. flexaeri to adhere to and invade polarized Caco-2 cells. The S. flexneri 2a O antigen has two preferred chain lengths: a short O antigen (S-OAg) regulated by the WzzB protein and a very long O antigen (VL-OAg) regulated by Wzz(pHS2). Mutants with defined deletions of the genes required for O-antigen assembly and polymerization were constructed and assayed for their abilities to adhere to and enter cultured epithelial cells. The results show that both VL- and S-OAg are required for invasion through the basolateral cell membrane. In contrast, the absence of O antigen does not impair adhesion. Purified LPS does not act as a competitor for the invasion of Caco-2 cells by the wild-type strain, suggesting that LPS is not directly involved in the internalization process by epithelial cells.
Resumo:
In many situations, the number of data points is fixed, and the asymptotic convergence results of popular model selection tools may not be useful. A new algorithm for model selection, RIVAL (removing irrelevant variables amidst Lasso iterations), is presented and shown to be particularly effective for a large but fixed number of data points. The algorithm is motivated by an application of nuclear material detection where all unknown parameters are to be non-negative. Thus, positive Lasso and its variants are analyzed. Then, RIVAL is proposed and is shown to have some desirable properties, namely the number of data points needed to have convergence is smaller than existing methods.
Resumo:
G protein-coupled receptors (GPCRs) are a large superfamily of signaling proteins expressed on the plasma membrane. They are involved in a wide range of physiological processes and, therefore, are exploited as drug targets in a multitude of therapeutic areas. In this extent, knowledge of structural and functional properties of GPCRs may greatly facilitate rational design of modulator compounds. Solution and solid-state nuclear magnetic resonance (NMR) spectroscopy represents a powerful method to gather atomistic insights into protein structure and dynamics. In spite of the difficulties inherent the solution of the structure of membrane proteins through NMR, these methods have been successfully applied, sometimes in combination with molecular modeling, to the determination of the structure of GPCR fragments, the mapping of receptor-ligand interactions, and the study of the conformational changes associated with the activation of the receptors. In this review, we provide a summary of the NMR contributions to the study of the structure and function of GPCRs, also in light of the published crystal structures.