993 resultados para photographic chart method
Resumo:
Bioorganic and biological chemistry have been found to be highly motivating to undergraduate students and in this context, biochemical blood parameter analysis emerges as highly attractive content. In this proposal, several aspects related to analyses of glucose, cholesterol and triglycerides using the enzymatic colorimetric method were involved, and the findings have at least two relevant implications: i) introducing students to connections between organic chemistry and biology based on enzymatic processes, including reactivity and mechanistic aspects; ii) performing a micro scale bioassay analysis. The proposal requires two theoretical classes (2 h per class) and one practical class (4 h).
Resumo:
Quetiapine is an atypical antipsychotic used to treat schizophrenia. However, despite great interest for its chronic therapeutic use, quetiapine has some important side effects such as weight gain induction. The development of a quetiapine nanocarrier can potentially target the drug into central nervous system, resulting in a reduction of systemic side effects and improved patient treatment. In the present work, a simple liquid chromatography/ultraviolet detection (LC/UV) analytical method was developed and validated for quantification of total quetiapine content in lipid core nanocapsules as well as for determination of incorporation efficiency. An algorithm proposed by Oliveira et al. (2012) was applied to characterize the distribution of quetiapine in the pseudo-phases of the nanocarrier, leading to a better understanding of the quetiapine nanoparticles produced. The analytical methodology developed was specific, linear in the range of 0.5 to 100 µg mL−1 (r2 > 0,99), and accurate and precise (R.S.D < ±5%). The absolute recovery of quetiapine from the nanoparticles was approximately 98% with an incorporation efficiency of approximately 96%. The results indicated that quetiapine was present in a type III distribution according to the algorithm, and was mainly located in the core of the nanoparticle because of its logD in the formulation pH (6.86 ± 0.4).
Resumo:
The microencapsulation of palm oil may be a mechanism for protecting and promoting the controlled release of its bioactive compounds. To optimize the microencapsulation process, it is necessary to accurately quantify the palm oil present both external and internal to the microcapsules. In this study, we developed and validated a spectrophotometric method to determine the microencapsulation efficiency of palm oil by complex coacervation. We used gelatin and gum arabic (1:1) as wall material in a 5% concentration (w/v) and palm oil in the same concentration. The coacervates were obtained at pH 4.0 ± 0.01, decanted for 24 h, frozen (−40 ºC), and lyophilized for 72 h. Morphological analyzes were then performed. We standardized the extraction of the external palm oil through five successive washes with an organic solvent. We then explored the best method for rupturing the microcapsules. After successive extractions with hexane, we determined the amount of palm oil contained in the microcapsules using a spectrophotometer. The proposed method was shown to be of low cost, fast, and easy to implement. In addition, in the validation step, we confirmed the method to be safe and reliable, as it proved to be specific, accurate, precise, and robust.