1000 resultados para p-aminobenzoate
Resumo:
The electrochemiluminescence (ECL) of tris(2,2'-bipyridine)ruthenium(ii) [Ru(bpy)(3)(2+)] immobilized in poly(p-styrenesulfonate) (PSS)-silica-Triton X-100 composite films was investigated. The cooperative action of PSS, sol-gel and Triton X-100 attached Ru(bpy)(3)(2+) to the electrode strongly, and the presence of Triton X-100 prevented drying fractures of the sol-gel films during gelation and even on repeated wet-dry cycles. The modified electrode was used for the ECL detection of oxalate, tripropylamine (TPA) and NADH in a flow injection analysis (FIA) system with a newly designed flow cell. The detection scheme exhibited good stability, short response time and high sensitivity. Detection limits were 0.1, 0.1 and 0.5 mu mol L-1 for oxalate, TPA and NADH, respectively, and the linear concentration range extended from 0.001 to 1 mmol L-1 for the three analytes. Applications of the flow cell in ECL and electrochemical detection, as well as the immobilization of reagents based on the cooperative action, are suggested.
Resumo:
A four-level model of P-6(7/2) excited state of Eu2+ ion in KMgF3: Eu2+ has been proposed. The decay profiles of the P-6(7/2) excited sstate of Eu2+ are two exponential and the physical implication of each term in the fit equation responsible for the model is interpreted. The data obtained spectroscopically are in good agreement with the fit results.
Resumo:
Energy transfer processes between Eu2+ and Gd3+, Cr3+, Ce3+ ions in KMgF3, which are difficult to study spectroscopically, have been investigated by using the proposed four-level decay model of the P-6(7/2) excited state of the Eu2+ ion. Gd3+ and Ce3+ transfer its energy to the vibronic transition of the P-6(7/2) --> S-8(7/2) transition of Eu2+, whereas Cr3+ receive energy from Eu2+ via the d-d interaction. The energy transfer from the Eu2+ 4f(6)5d level to the Ce3+ 4f5d state is observed spectroscopically, and the energy transfer mechanism is discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Two series of thermotropic copolyesters of p-hydroxybenzoic acid (HBA) were synthesized by direct thermal polycondensation. One comprised aromatic copolyesters from HBA, terephthalic acid, bis(4-hydroxyphenyl) ketone (BHP) and resorcinol. The other comprised semi-aromatic copolyesters from HBA, terephthalic acid, BHP and alpha,-diols with carbon atom number of 4, 6, 8, 10. The properties of the two series were characterized by polarized light microscopy, differential scanning calorimetry and wide angle X-ray diffraction. Most of the resulting copolyesters could form a nematic phase over a wide temperature range above their melting points. The effects of Variation in composition and monomer structure on the properties of copolyesters were discussed. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
系统地综述了压力 -温度 -体积 ( p- V- T)性质在高聚物及其共混物中的应用 ,展示了 p- V- T在研究高聚物实际应用中的重要作用
Resumo:
The infrared spect ra of N-n-(4-nitrophenyl)azophenyloxyalkyldiethanolamines (Cn) are examined in the range of 4000-400 cm(-1) at different temperatures and the assignment of the fundamental vibrations given. Based on (1) the localization of the broad absorption band at 3456 cm(-1), and (2) attribution of the associated OH bands centred at 1410-1390, 1100, and 650-634 cm(-1) to, respectively delta OH deformation, nu C-O stretching and gamma OH out-of-plane bending, intermolecular hydrogen bonding between OH groups in the crystalline, liquid crystalline and isotropic states is proposed. By considering the results of FTIR, WAXD and DSC measurements, the molecular arrangement of C10 in its smectic A phase as consisting of hydrogen bonding and strong interaction between dipolar groups (NO,) is proposed. This may explain the high stability and high orientational ordering property of Cn compounds in the liquid crystalline state compared with that of n-bromo-1-[4-(4-nitrophenyl)azophenyl]oxyalkanes (Bn).
Resumo:
H-1 and C-13 nuclear magnetic resonance (NMR) spectra of 2, 2'-bis(p-aminobenzoic ester)-1,1'-binaphthyl were assigned and confirmed using 2D H-1-H-1 COSY, C-13-H-1 HETCOR and C-13-H-1 long-range HETCOR methods. This provided a basis for NMR characterization of the similar compounds.
Resumo:
The catalyst system neodymium phosphonate Nd(P-507)(3)/H2O/Al(i-Bu)(3) for the polymerization of styrene was examined. Effects of the addition order of the catalyst components, catalyst aging time and aging temperature on the catalyst activity and the polymer characteristics were investigated. The catalyst activity for isospecific polymerization of styrene increases with aging time and reaches the maximum with a catalyst aged for 45 min at 70 degrees C. The aging time that the catalyst needs to reach the highest activity for isospecific polymerization decreases with increasing aging temperature. The preformed catalyst and the in situ catalyst were compared with respect to the kinetic behavior of the styrene polymerization and the polymer characteristics.
Resumo:
With a newly synthesized poly(p-phenylene vinylene) (PPV) multiblock copolymer used in a triple-layer structure, efficient green light-emitting diodes with low driving voltage have been fabricated. The devices are turned on at 2.5 V, the brightness at 5 V is above 100 cd/m(2) and at 7 V is about 1650 cd/m(2), with an external quantum efficiency of about 1%. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
The blends of poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) (P(HB-co-HV)/poly(p-vinylphenol)(PVPh) were investigated by differential scanning calorimetry (DSC), Fourier transform IR (FT-IR) spectroscopy and high-resolution solid-state C-13 NMR techniques. Single glass transition temperatures existing in the whole composition range indicates that these blends are miscible. The presence of hydrogen bonding between the hydroxyl of PVPh and carbonyl of P(HB-co-HV), shown by FT-IR spectra, is the origin of the miscibility. Furthermore, results obtained by high-resolution solid-state C-13 NMR give more information about the structure of the blends. (C) 1998 Elsevier Science Ltd. All rights reserved.