1000 resultados para oxygen affinity
Resumo:
By using a fast reaction technique which employs H2S gas as a fast-reacting chemical repair agent, it is possible to measure the competition kinetics between chemical repair reactions and oxygen fixation reactions in model DNA and cellular systems. In plasmid pBR322 DNA irradiated with electrons, we have compared the oxygen fixation reactions of the free radical precursors that lead to the production of single-strand (SSBs) and double-strand breaks (DSBs). For the oxygen-dependent fixation of radical damage leading to SSBs, a second-order rate constant of 2.3 x 10(8) dm(3) mol(-1) s(-1) was obtained compared to 8.9 x 10(7) dm(3) mol(-1) s(-1) for DSBs. The difference is in general agreement with predictions from a multiple-radical model where the precursor of a DSB originates from two radicals. The fixation of this precursor by oxygen will require both radicals to be fixed for the DSB to be formed, which will have slower kinetics than that of single free-radical precursors of SSBs. (C) 1999 by Radiation Research Society.
Resumo:
A reflex discharge plasma, obtained as a hybrid between a Penning discharge plasma (PDP) and a hollow-cathode discharge (HCD) plasma, is analysed as a possible direction-current, high-density plasma source. The experiment is run in oxygen at pressures of 10 mTorr and 1 mTorr, and for discharge currents of 100 to 200 mA. Although the gas pressure is considerably lower than those used in HCDs, the hollow-cathode effect (HCE) occurs for current levels higher than 100 mA and leads to plasma densities comparable with those obtained using inductive plasma sources. The presence of a constant magnetic field leads to the enhancement of electron emission from cathodes under ion bombardment, and to the decreasing of the ion loss by diffusion to the wall.
Resumo:
Spectroscopic absorption and emission measurements have been used to study laser deposition of YBCO films. They show that >95% of the monatomic Y and Ba initially ablated from the target undergo gas-phase chemical combination before film deposition. In contrast, considerable monatomic Cu persists into the deposition region. in this region, equilibrated gas temperatures are of the order of 2700 K. It is suggested that this high temperature facilitates film crystallization and epitaxial growth. The survival of monatomic Cu in the plume to the site of deposition is a manifestation of its endothermic reaction with O-2.
Resumo:
The excreted/secreted proteinases of adult and juvenile Fasciola hepatica maintained in vitro were found to hydrolyse the fluorogenic substrates Cbz-Phe-Arg- and Cbz-Arg-Arg-NHMec. This activity was demonstrated to have a classical cysteine proteinase inhibitor profile, with turn-over of both substrates being blocked by pre-incubation with E64 and peptidyl diazomethanes. The Cbz-Arg-Arg-NHMec hydrolysing activity of the mature fluke exhibited an alkaline stability not characteristic of its mammalian lysosomal counterparts. Further, the biotinylated affinity reagents biotin-Phe-Ala CHN2 and biotin-Phe-Cys(SBzyl)-CHN2 were used to label and characterize these cysteine proteinases in terms of apparent molecular weight and subsite specificity. Adult fluke media were found to contain four species of molecular weights 66, 58, 50 and 25-26 kDa; juvenile media contained three species of molecular weights 66, 54 and 25-26 kDa. The major 25-26 kDa cysteine proteinase common to both stages was shown to have a subsite specificity similar to that of mammalian cathepsin B.
Resumo:
In this study we report on the synthesis, kinetic characterization and application of a novel biotinylated and active-site-directed inactivator of cathepsin B. Thus the peptidyliazomethane biotinyl-Phe-Ala-diazomethane has been synthesized by a combination of solid-phase and solution methodologies and has been shown to be a very efficient inactivator of bovine and human cathepsin B. The respective apparent second-order rate constants (k0bs./[I]) for the inactivation of the human and bovine enzymes by this reagent, namely approximately 5.4 x 10(4) M-1 and approximately 7.8 x 10(4) M-1, compare very favourably with those values determined for the urethane-protected analogue benzloxycarbonyl-Phe-Ala-chloromethane first described by Green & Shaw [(1981) J.Biol. Chem. 256, 1923-1928], thus demonstrating that the presence of the biotin moiety at the P3 position is compatible with inhibitor effectiveness. The utilization of this reagent for the detection of cathepsin B in electrophoretic gels, using Western blotting and in combination with a streptavidin/alkaline phosphatase detection system, is also demonstrated. Given that the peptidydiazomethanes exhibit a pronounced reactivity towards cysteine proteinases, we feel that the present label may well constitute the archetypal example of a wide range of reagents for the selective labelling of this class of proteinase, even in a complex biological milieu containing additional classes of proteinases.
Resumo:
The Burkholderia cepacia complex comprises groups of genomovars (genotypically distinct strains with very similar phenotypes) that have emerged as important opportunistic pathogens in cystic fibrosis (CF) patients. The inflammatory response against bacteria in the airways of CF individuals is dominated by polymorphonuclear cells and involves the generation of oxidative stress, which leads to further inflammation and tissue damage. Bacterial catalase, catalase-peroxidase and superoxide dismutase activities may contribute to the survival of B. cepacia following exposure to reactive oxygen metabolites generated by host cells in response to infection. In the present study the authors investigated the production of catalase, peroxidase and SOD by isolates belonging to various genomovars of the B. cepacia complex. Production of both catalase and SOD was maximal during late stationary phase in almost all isolates examined. Native PAGE identified 13 catalase electrophoretotypes and two SOD electrophoretotypes (corresponding to an Fe-SOD class) in strains belonging to the six genomovars of the B. cepacia complex. Seven out of 11 strains displaying high-level survival after H(2)O(2) treatment in vitro had a bifunctional catalase/peroxidase, and included all the genomovar III strains examined. These isolates represent most of the epidemic isolates that are often associated with the cepacia syndrome. The majority of the isolates from all the genomovars were resistant to extracellular O(-)(2), while resistance to intracellularly generated O(-)(2)was highly variable and could not be correlated with the detected levels of SOD activity. Altogether the results suggest that resistance to toxic oxygen metabolites from extracellular sources may be a factor involved in the persistence of B. cepacia in the airways of CF individuals.