995 resultados para ovarian stimulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In cardiac muscle the amplitude of Ca(2+) transients can be increased by enhancing Ca(2+) influx. Among the processes leading to increased Ca(2+) influx, agonists of the L-type Ca(2+)-channel can play an important role. Known pharmacological Ca(2+)-channel agonists act on different binding sites on the channel protein, which may lead not only to enhanced peak currents, but also to distinct changes in other biophysical characteristics of the current. In this study, membrane currents were recorded with the patch-clamp technique in the whole-cell configuration in guinea pig isolated ventricular myocytes in combination with confocal fluorescence Ca(2+) imaging techniques and a variety of pharmacological tools. Testing a new positive inotropic steroid-like compound, we found that it increased the L-type Ca(2+)-current by 2.5-fold by shifting the voltage-dependence of activation by 20.2 mV towards negative potentials. The dose-response relationship revealed two vastly different affinities (EC(50(high-affinity))=4.5+/-1.7 nM, EC(50(low-affinity))=8.0+/-1.1 microM) exhibiting differential pharmacological interactions with three classes of Ca(2+)-current antagonists, suggesting more than one binding site on the channel protein. Therefore, we identified and characterized a novel positive inotropic compound (F90927) as a member of a new class of Ca(2+)-channel agonists exhibiting unique features, which set it apart from other presently known L-type Ca(2+)-channel agonists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study was to compare the effect duration of two different protocols of repetitive transcranial magnetic stimulation (rTMS) on saccade triggering. In four experiments, two regions (right frontal eye field (FEF) and vertex) were stimulated using a 1-Hz and a theta burst protocol (three 30Hz pulses repeated at intervals of 100ms). The same number of TMS pulses (600 pulses) was applied with stimulation strength of 80% of the resting motor threshold for hand muscles. Following stimulation the subjects repeatedly performed an oculomotor task using a modified overlap paradigm, and saccade latencies were measured over a period of 60min. The results show that both 1-Hz and theta burst stimulation had inhibitory effects on saccade triggering when applied over the FEF, but not over the vertex. One-hertz rTMS significantly increased saccade latencies over a period of about 8min. After theta burst rTMS, this effect lasted up to 30min. Furthermore, the decay of rTMS effects was protocol-specific: After 1-Hz stimulation, saccade latencies returned to a baseline level much faster than after theta burst stimulation. We speculate that these time course differences represent distinct physiological mechanisms of how TMS interacts with brain function.