997 resultados para neuroendocrine cell


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is motivated by experimental observations that cells on stretched substrate exhibit different responses to static and dynamic loads. A model of focal adhesion that can consider the mechanics of stress fiber, adhesion bonds, and substrate was developed at the molecular level by treating the focal adhesion as an adhesion cluster. The stability of the cluster under dynamic load was studied by applying cyclic external strain on the substrate. We show that a threshold value of external strain amplitude exists beyond which the adhesion cluster disrupts quickly. In addition, our results show that the adhesion cluster is prone to losing stability under high-frequency loading, because the receptors and ligands cannot get enough contact time to form bonds due to the high-speed deformation of the substrate. At the same time, the viscoelastic stress fiber becomes rigid at high frequency, which leads to significant deformation of the bonds. Furthermore, we find that the stiffness and relaxation time of stress fibers play important roles in the stability of the adhesion cluster. The essence of this work is to connect the dynamics of the adhesion bonds (molecular level) with the cell's behavior during reorientation (cell level) through the mechanics of stress fiber. The predictions of the cluster model are consistent with experimental observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular cell pattern evolution of cylindrically-diverging detonations is numerically simulated successfully by solving two-dimensional Euler equations implemented with an improved two-step chemical kinetic model. From the simulation, three cell bifurcation modes are observed during the evolution and referred to as concave front focusing, kinked and wrinkled wave front instability, and self-merging of cellular cells. Numerical research demonstrates that the wave front expansion resulted from detonation front diverging plays a major role in the cellular cell bifurcation, which can disturb the nonlinearly self-sustained mechanism of detonations and finally lead to cell bifurcations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell adhesion, which is mediated by the receptor-ligand bonds, plays an essential role in various biological processes. Previous studies often described the force-extension relationship of receptor-ligand bond with linear assumption. However, the force-extension relationship of the bond is intrinsically nonlinear, which should have significant influence on the mechanical behavior of cell adhesion. In this work, a nonlinear mechanical model for cell adhesion is developed, and the adhesive strength was studied at various bond distributions. We find that the nonlinear mechanical behavior of the receptor-ligand bonds is crucial to the adhesive strength and stability. This nonlinear behavior allows more bonds to achieve large bond force simultaneously, and therefore the adhesive strength becomes less sensitive to the change of bond density at the outmost periphery of the adhesive area. In this way, the strength and stability of cell adhesion are soundly enhanced. The nonlinear model describes the cell detachment behavior better than the linear model. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An embedded cell model is presented to obtain the effective elastic moduli for three-dimensional two-phase composites which is an exact analytic formula without any simplified approximation and can be expressed in an explicit form. For the different cells such as spherical inclusions and cracks surrounded by sphere and oblate ellipsoidal matrix, the effective elastic moduli are evaluated and the results are compared with those from various micromechanics models. These results show that the present model is direct, simple and efficient to deal with three-dimensional tyro-phase composites.