996 resultados para nano carriers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

El hormigón autocompactante se puede definir como aquel hormigón que bajo la acción de su propio peso, es capaz de fluir y rellenar toda la superficie de un molde, pasando a través de zonas densamente armadas, sin la necesidad de algún mecanismo de compactación o vibración. Este hormigón se fabrica con los mismos componentes que un hormigón convencional pero variando ciertos aspectos de la composición con un incremento de áridos finos, una disminución de áridos grueso, incorporación del filler y aditivos como el superplastificante y el agente modificador de viscosidad. Finalmente se obtendrá un hormigón con alto contenido de finos, mayor volumen de pasta, alto contenido de adiciones y aditivos. Teniendo en cuenta lo antes expresado el hormigón autocompactante debe cumplir con unas propiedades en estado fresco como lo es la capacidad de relleno, capacidad de paso y resistencia a la segregación. Al cumplir con estas propiedades obtendremos la principal propiedad de estos hormigones que es la autocompactabilidad. Se puede decir que en estado endurecido el hormigón autocompactante tiende a comportarse muy similar al hormigón convencional, pero apreciando una mejoría en el aspecto de la durabilidad y una mayor deformaciones endógenas por el alto contenido de pasta. En este Trabajo Fin de Máster se realizó una campaña experimental para estudiar el efecto de las nano adiciones y fibras en un hormigón autocompactante (HACNF), siendo esto expresado el objetivo fundamental. Las nano adiciones utilizadas fueron nano alúmina (Al₂O₃) y nano sílice (SiO₂) y las fibras que se incorporaron para reforzar fueron fibras de acero y fibras de poliolefina. Para poder caracterizar el HACNF en estado fresco se realizaron dos ensayos los cuales fueron el ensayo de escurrimiento y el ensayo de embudo en V. Las propiedades en estado endurecido se midieron mediante los ensayos de resistencia a compresión, resistencia a tracción indirecta, módulo de elasticidad, profundidad de penetración de agua bajo presión y resistencia a flexo-tracción. Los resultados obtenidos fueron satisfactorios y acorde con lo establecido en la norma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A lo largo de los últimos años, la ingeniería de la construcción ha seguido una tendencia creciente en lo que se refiere a la exigencia de altas prestaciones en los materiales empleados en obra, siendo el hormigón el material por excelencia. Es bien conocido que la capacidad de mejora de las prestaciones de los materiales está estrechamente ligada al desarrollo tecnológico existente en ese tiempo. En la actualidad, de entre todos los avances tecnológicos, cabe destacar la nanotecnología, ciencia que trabaja con elementos de tamaño 109 y que en los últimos años está siendo el motor de las investigaciones en el campo de la construcción. De entre todas las nano-adiciones existentes cabe destacar la nano-sílice, estudiada por numerosos investigadores y que goza de un gran número de artículos científicos. En cambio, existen otras nano-adiciones que no han tenido tanta aceptación o se encuentran en un segundo plano, como son la nano-hierro y la nano-alúmina. Es por tanto objeto de este Trabajo Fin de Máster: estudiar el efecto de la incorporación en diferentes proporciones de nano-adiciones de sílice, hierro y alúmina a un mortero de cemento convencional, mediante una campaña experimental realizada en el seno del Departamento de Ingeniería de la Construcción de la ETSICCP de la Universidad Politécnica de Madrid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cada vez más, el hormigón tiene unas aplicaciones estructurales que demandan unos requisitos de resistencia y durabilidad difíciles de alcanzar siguiendo dosificaciones convencionales. Este contexto, de una mayor exigencia y desempeño del hormigón, es el epicentro de numerosas investigaciones que persiguen mejorar las características de los hormigones a través del uso de adiciones. Dentro de este marco de investigación, los últimos avances se encuentran vinculados al desarrollo de la nanotecnología, concretamente al uso de adiciones de tamaño nanométrico. La presente investigación queda enmarcada dentro de un Trabajo Fin de Máster y persigue la evaluación de los efectos a nivel microestructural y macroestructural del efecto de adiciones de tamaño nanométrico de hierro y sílice en proporciones variables a morteros de cemento. Para ver estas posibles mejoras, se comparará cuantitativamente con un mortero convencional de referencia. Para poder realizar dicha evaluación, se realizará una campaña experimental que incluye ensayos de resistencia, porosimetría, análisis térmico diferencial y resistividad. Una vez realizados los ensayos se ha procedido a analizar los resultados y a partir de ellos se han obtenido conclusiones acerca del desempeño de las nano adiciones en la matriz cementícia, así como de sus efectos en términos de resistencia y durabilidad principalmente. Finalmente, y dado que la investigación se encuentra acotada en el tiempo al ser un proyecto final de máster, se proponen unas líneas de investigación futuras con el fin de poder profundizar más en los procesos microestructurales que rigen el comportamiento de estas partículas en la matriz cementícia y con el propósito también de poder explicar resultados que no hayan podido quedar suficientemente resueltos a través del presente trabajo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A temperature accelerated life test on concentrator lattice mismatched Ga0.37In0.63P/Ga0.83In0.17As/Ge triple-junction solar cells-on-carrier is being carried out. The solar cells have been tested at three different temperatures: 125, 145 and 165°C and the nominal photo-current condition (500X) is emulated by injecting current in darkness. The final objective of these tests is to evaluate the reliability, warranty period, and failure mechanism of these solar cells in a moderate period of time. Up to now only the test at 165°C has finished. Therefore, we cannot provide complete reliability information, but we have carried out preliminary data and failure analysis with the current results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of the carbon nanotubes (CNTs) content on the fiber/matrix interfacial shear strength (IFSS) in glass/fiber epoxy composites was measured by means of push-in and push-out tests. Both experimental methodologies provided equivalent values of the IFSS for each material. It was found that the dispersion of CNTs increased in IFSS by 19% in average with respect to the composite without CNTs. This improvement was reached with 0.3 wt.% of CNTs and increasing the CNT content up to 0.8 wt.% did not improve the interface strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of nano-silica, nano-alumina and binary combinations on surface hardness, resistance to abrasion and freeze-thaw cycle resistance in cement mortars was investigated. The Vickers hardness, the Los Angeles coefficient (LA) and the loss of mass in each of the freeze–thaw cycles to which the samples were subjected were measured. Four cement mortars CEM I 52.5R were prepared, one as control, and the other three with the additions: 5% nano-Si, 5% nano-Al and mix 2.5% n-Si and 2.5% n-Al. Mortars were tested at 7, 28 and 90 d of curing to determine compression strength, total porosity and pore distribution by mercury intrusion porosimetry (MIP) and the relationship between the CSH gel and Portlandite total by thermal gravimetric analysis (TGA). The capillary suction coefficient and an analysis by a scanning electron microscope (SEM) was made. There was a large increase in Vickers surface hardness for 5% n-Si mortar and a slight increase in resistance to abrasion. No significant difference was found between the mortars with nano-particles, whose LA was about 10.8, classifying them as materials with good resistance to abrasion. The microstructure shows that the addition of n-Si in mortars refines their porous matrix, increases the amount of hydrated gels and generates significant changes in both Portlandite and Ettringite. This produced a significant improvement in freeze–thaw cycle resistance. The effect of n-Al on mortar was null or negative with respect to freeze–thaw cycle resistance.