998 resultados para museum samples


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A liquid chromatography tandem mass spectrometry (LC-MS/MS) confirmatory method for the simultaneous determination of nine corticosteroids in liver, including the four MRL compounds listed in Council Regulation 37/2010, was developed. After an enzymatic deconjugation and a solvent extraction of the liver tissue, the resulting solution was cleaned up through an SPE Oasis HLB cartridge. The analytes were then detected by liquid chromatography-negative-ion electrospray tandem mass spectrometry, using deuterium-labelled internal standards. The procedure was validated as a quantitative confirmatory method according to the Commission Decision 2002/657/EC criteria. The results showed that the method was suitable for statutory residue testing regarding the following performance characteristics: instrumental linearity, specificity, precision (repeatability and intra-laboratory reproducibility), recovery, decision limit (CCα), detection capability (CCβ) and ruggedness. All the corticosteroids can be detected at a concentration around 1 μg kg(-1); the recoveries were above 62% for all the analytes. Repeatability and reproducibility (within-laboratory reproducibility) for all the analytes were below 7.65% and 15.5%, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular genetic testing is commonly used to confirm clinical diagnoses of inherited urea cycle disorders (UCDs); however, conventional mutation screenings encompassing only the coding regions of genes may not detect disease-causing mutations occurring in regulatory elements and introns. Microarray-based target enrichment and next-generation sequencing now allow more-comprehensive genetic screening. We applied this approach to UCDs and combined it with the use of DNA bar codes for more cost-effective, parallel analyses of multiple samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cutaneous T-cell lymphomas (CTCLs) are malignancies of skin-homing lymphoid cells, which have so far not been investigated thoroughly for common oncogenic mutations. We screened 90 biopsy specimens from CTCL patients (41 mycosis fungoides, 36 Sézary syndrome, and 13 non-mycosis fungoides/Sézary syndrome CTCL) for somatic mutations using OncoMap technology. We detected oncogenic mutations for the RAS pathway in 4 of 90 samples. One mycosis fungoides and one pleomorphic CTCL harbored a KRAS(G13D) mutation; one Sézary syndrome and one CD30(+) CTCL harbored a NRAS(Q61K) amino acid change. All mutations were found in stage IV patients (4 of 42) who showed significantly decreased overall survival compared with stage IV patients without mutations (P = .04). In addition, we detected a NRAS(Q61K) mutation in the CTCL cell line Hut78. Knockdown of NRAS by siRNA induced apoptosis in mutant Hut78 cells but not in CTCL cell lines lacking RAS mutations. The NRAS(Q61K) mutation sensitized Hut78 cells toward growth inhibition by the MEK inhibitors U0126, AZD6244, and PD0325901. Furthermore, we found that MEK inhibitors exclusively induce apoptosis in Hut78 cells. Taken together, we conclude that RAS mutations are rare events at a late stage of CTCL, and our preclinical results suggest that such late-stage patients profit from MEK inhibitors.