999 resultados para malware classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid growth of technical developments has created huge challenges for microphone forensics - a subcategory of audio forensic science, because of the availability of numerous digital recording devices and massive amount of recording data. Demand for fast and efficient methods to assure integrity and authenticity of information is becoming more and more important in criminal investigation nowadays. Machine learning has emerged as an important technique to support audio analysis processes of microphone forensic practitioners. However, its application to real life situations using supervised learning is still facing great challenges due to expensiveness in collecting data and updating system. In this paper, we introduce a new machine learning approach which is called One-class Classification (OCC) to be applied to microphone forensics; we demonstrate its capability on a corpus of audio samples collected from several microphones. Research results and analysis indicate that OCC has the potential to benefit microphone forensic practitioners in developing new tools and techniques for effective and efficient analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binary signatures have been widely used to detect malicious software on the current Internet. However, this approach is unable to achieve the accurate identification of polymorphic malware variants, which can be easily generated by the malware authors using code generation engines. Code generation engines randomly produce varying code sequences but perform the same desired malicious functions. Previous research used flow graph and signature tree to identify polymorphic malware families. The key difficulty of previous research is the generation of precisely defined state machine models from polymorphic variants. This paper proposes a novel approach, using Hierarchical Hidden Markov Model (HHMM), to provide accurate inductive inference of the malware family. This model can capture the features of self-similar and hierarchical structure of polymorphic malware family signature sequences. To demonstrate the effectiveness and efficiency of this approach, we evaluate it with real malware samples. Using more than 15,000 real malware, we find our approach can achieve high true positives, low false positives, and low computational cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zero-day or unknown malware are created using code obfuscation techniques that can modify the parent code to produce offspring copies which have the same functionality but with different signatures. Current techniques reported in literature lack the capability of detecting zero-day malware with the required accuracy and efficiency. In this paper, we have proposed and evaluated a novel method of employing several data mining techniques to detect and classify zero-day malware with high levels of accuracy and efficiency based on the frequency of Windows API calls. This paper describes the methodology employed for the collection of large data sets to train the classifiers, and analyses the performance results of the various data mining algorithms adopted for the study using a fully automated tool developed in this research to conduct the various experimental investigations and evaluation. Through the performance results of these algorithms from our experimental analysis, we are able to evaluate and discuss the advantages of one data mining algorithm over the other for accurately detecting zero-day malware successfully. The data mining framework employed in this research learns through analysing the behavior of existing malicious and benign codes in large datasets. We have employed robust classifiers, namely Naïve Bayes (NB) Algorithm, k−Nearest Neighbor (kNN) Algorithm, Sequential Minimal Optimization (SMO) Algorithm with 4 differents kernels (SMO - Normalized PolyKernel, SMO – PolyKernel, SMO – Puk, and SMO- Radial Basis Function (RBF)), Backpropagation Neural Networks Algorithm, and J48 decision tree and have evaluated their performance. Overall, the automated data mining system implemented for this study has achieved high true positive (TP) rate of more than 98.5%, and low false positive (FP) rate of less than 0.025, which has not been achieved in literature so far. This is much higher than the required commercial acceptance level indicating that our novel technique is a major leap forward in detecting zero-day malware. This paper also offers future directions for researchers in exploring different aspects of obfuscations that are affecting the IT world today.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an application of machine learning to the problem of classifying patients with glaucoma into one of two classes:stable and progressive glaucoma. The novelty of the work is the use of new features for the data analysis combined with machine learning techniques to classify the medical data. The paper describes the new features and the results of using decision trees to separate stable and progressive cases. Furthermore, we show the results of using an incremental learning algorithm for tracking stable and progressive cases over time. In both cases we used a dataset of progressive and stable glaucoma patients obtained from a glaucoma clinic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of multiple classification and clustering systems for the detection of malware is an important problem in internet security. Grobner-Shirshov bases have been used recently by Dazeley et al. [15] to develop an algorithm for constructions with certain restrictions on the sandwich-matrices. We develop a new Grobner Shirshov algorithm which applies to a larger variety of constructions based on combinatorial Rees matrix semigroups without any restrictions on the sandwich matrices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epoetin-δ (Dynepo™ Shire Pharmaceuticals, Basing stoke, UK) is a synthetic form of erythropoietin (EPO) whose resemblance with endogenous EPO makes it hard to identify using the classical identification criteria. Urine samples collected from six healthy volunteers treated with epoetin-δ injections and from a control population were immuno-purified and analyzed with the usual IEF method. On the basis of the EPO profiles integration, a linear multivariate model was computed for discriminant analysis. For each sample, a pattern classification algorithm returned a bands distribution and intensity score (bands intensity score) saying how representative this sample is of one of the two classes, positive or negative. Effort profiles were also integrated in the model. The method yielded a good sensitivity versus specificity relation and was used to determine the detection window of the molecule following multiple injections. The bands intensity score, which can be generalized to epoetin-α and epoetin-β, is proposed as an alternative criterion and a supplementary evidence for the identification of EPO abuse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smartphones are mobile phones that offer processing power and features like personal computers (PC) with the aim of improving user productivity as they allow users to access and manipulate data over networks and Internet, through various mobile applications. However, with such anywhere and anytime functionality, new security threats and risks of sensitive and personal data are envisaged to evolve. With the emergence of open mobile platforms that enable mobile users to install applications on their own, it opens up new avenues for propagating malware among various mobile users very quickly. In particular, they become crossover targets of PC malware through the synchronization function between smartphones and computers. Literature lacks detailed analysis of smartphones malware and synchronization vulnerabilities. This paper addresses these gaps in literature, by first identifying the similarities and differences between smartphone malware and PC malware, and then by investigating how hackers exploit synchronization vulnerabilities to launch their attacks.