995 resultados para instrumentation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iron(II) complexes of polypyridyl ligands (B), viz. Fe(B)(2)]Cl-2 (1 and 2) of N, N, N-donor 2-(2-pyridyl)-1,10-phenanthroline (pyphen in 1) and 3-(pyridin-2-yl)dipyrido3,2-a:2',3'-c]phenazine (pydppz in 2), are prepared and characterized. They are 1:2 electrolytes in aqueous DMF. The diamagnetic complexes exhibit metal to ligand charge transfer band near 570 nm in DMF. The complexes are avid binders to calf thymus DNA giving binding constant (K (b)) values of similar to 10(6) M-1 suggesting significant intercalative DNA binding of the complexes due to presence of planar phenanthroline bases. Complex 2 exhibits significant photocytotoxicity in immortalized human keratinocyte cells HaCaT and breast cancer cell line MCF-7 giving IC50 values of 0.08 and 13 mu M in visible light (400-700 nm). Complex 2 shows only minor dark toxicity in HaCaT cells but is non-toxic in dark in MCF-7 cancer cells. The light-induced cellular damage follows apoptotic pathway on generation of reactive oxygen species as evidenced from the dichlorofluorescein diacetate (DCFDA) assay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, we have synthesized Fe, Co and Ni doped BaTiO3 catalyst by a wet chemical synthesis method using oxalic acid as a chelating agent. The concentration of the metal dopant varies from 0 to 5 mol% in the catalysts. The physical and chemical properties of doped BaTiO3 catalysts were studied using various analytical methods such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), BET surface area and Transmission electron microscopy (TEM). The acidic strength of the catalysts was measured using a n-butylamine potentiometric titration method. The bulk BaTiO3 catalyst exhibits a tetragonal phase with the P4mm space group. A structural transition from tetrahedral to cubic phase was observed for Fe, Co and Ni doped BaTiO3 catalysts with an increase in doped metal concentration from 1 to 5 mol%. The particle sizes of the catalysts were calculated from TEM images and are in the range of 30-80 nm. All the catalysts were tested for the catalytic reduction of nitrobenzene to azoxybenzene. The BaTiO3 catalyst was found to be highly active and less selective compared to the doped catalysts which are active and highly selective towards azoxybenzene. The increase in selectivity towards azoxybenzene is due to an increase in acidic strength and reduction ability of the doped metal. It was also observed that the nature of the metal dopant and their content at the B-site has an impact on the catalytic reduction of nitrobenzene. The Co doped BaTiO3 catalyst showed better activity with only 0.5 mol% doping than Fe and Ni doped BaTiO3 catalysts with maximum nitrobenzene conversion of 91% with 78% selectivity to azoxybenzene. An optimum Fe loading of 2.5 mol% in BaTiO3 is required to achieve 100% conversion with 93% selectivity whereas Ni with 5 mol% showed a conversion of 93% and a azoxybenzene selectivity of 84%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The compressive behavior of carbon nanotube (CNT) foam with an entangled microstructure has become an important research area due to its excellent energy absorption capability. This report presents a tailored mechanical behavior of CNT foam under an applied magnetic field when all CNTs in the foam are coated with magnetic nanoparticles. The presence of nanoparticles not only enhanced the stiffness of the foam to four times but also revealed a nonlinear variation in both the stress and energy absorption capability with the gradual increase of the magnetic field. Magnetization of both CNT and attached nanoparticles along the magnetic field direction are shown to play a crucial role in determining the dominant deformation mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The variation of normalized electrical resistivity in the system of glasses Ge15Te85-xSnx with (1 <= x <= 5) has been studied as a function of high pressure for pressures up to 9.5 GPa. It is found that with the increase in pressure, the resistivity decreases initially and shows an abrupt fall at a particular pressure, indicating the phase transition from semiconductor to near metallic at these pressures, which lie in the range 1.5-2.5 GPa, and then continues being metallic up to 9.5 GPa. This transition pressure is seen to decrease with the increase in the percentage content of tin due to increasing metallicity of tin. The semiconductor to near metallic transition is exactly reversible and may have its origin in a reduction of the band gap due to high pressure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Time Projection Chamber (TPC) based X-ray polarimeters using Gas Electron Multiplier (GEM) are currently being developed to make sensitive measurement of polarization in 2-10 keV energy range. The emission direction of the photoelectron ejected via photoelectric effect carries the information of the polarization of the incident X-ray photon. Performance of a gas based polarimeter is affected by the operating drift parameters such as gas pressure, drift field and drift-gap. We present simulation studies carried out in order to understand the effect of these operating parameters on the modulation factor of a TPC polarimeter. Models of Garfield are used to study photoelectron interaction in gas and drift of electron cloud towards GEM. Our study is aimed at achieving higher modulation factors by optimizing drift parameters. Study has shown that Ne/DME (50/50) at lower pressure and drift field can lead to desired performance of a TPC polarimeter.