994 resultados para injection site erythema
Resumo:
Mixing of oppositely charged amphiphilic molecules (catanionic mixing) offers an attractive strategy to produce morphologies different from those formed by individual molecules. We report here on the use of catanionic mixing of anticancer drug amphiphiles to construct multiwalled nanotubes containing a fixed and high drug loading. We found that the molecular mixing ratio, the solvent composition, the overall drug concentrations, as well as the molecular design of the studied amphiphiles are all important experimental parameters contributing to the tubular morphology. We believe these results demonstrate the remarkable potential that anticancer drugs could offer to self-assemble into discrete nanostructures and also provide important insight into the formation mechanism of nanotubes by catanionic mixtures. Our preliminary animal studies reveal that the CPT nanotubes show significantly prolonged retention time in the tumor site after intratumoral injection.
Resumo:
In England, appraisals of the financial viability of development schemes have become an integral part of planning policy-making, initially in determining the amount of planning obligations that might be obtained via legal agreements (known as Section 106 agreements) and latterly as a basis for establishing charging schedules for the Community Infrastructure Levy (CIL). Local planning authorities set these policies on an area-wide basis but ultimately development proposals require consent on a site-by-site basis. It is at this site-specific level that issues of viability are hotly contested. This paper examines case documents, proofs of evidence and decisions from a sample of planning disputes in order to address major issues within development viability, the application of the models and the distribution of the development gain between the developer, landowner and community. The results have specific application to viability assessment in England and should impact on future policy and practice guidance in this field. They also have relevance to other countries that incorporate assessments of economic viability in their planning systems.
Resumo:
To analyse the mechanism and kinetics of DNA strand cleavages catalysed by the serine recombinase Tn3 resolvase, we made modified recombination sites with a single-strand nick in one of the two DNA strands. Resolvase acting on these sites cleaves the intact strand very rapidly, giving an abnormal half-site product which accumulates. We propose that these reactions mimic second-strand cleavage of an unmodified site. Cleavage occurs in a synapse of two sites, held together by a resolvase tetramer; cleavage at one site stimulates cleavage at the partner site. After cleavage of a nicked-site substrate, the half-site that is not covalently linked to a resolvase subunit dissociates rapidly from the synapse, destabilizing the entire complex. The covalent resolvase–DNA linkages in the natural reaction intermediate thus perform an essential DNA-tethering function. Chemical modifications of a nicked-site substrate at the positions of the scissile phosphodiesters result in abolition or inhibition of resolvase-mediated cleavage and effects on resolvase binding and synapsis, providing insight into the serine recombinase catalytic mechanism and how resolvase interacts with the substrate DNA.