995 resultados para giant dipole resonance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The term `laser cooling' is applied to the use of optical means to cool the motional energies of either atoms and molecules, or micromirrors. In the literature, these two strands are kept largely separate; both, however suffer from severe limitations. Laser cooling of atoms and molecules largely relies on the internal level structure of the species being cooled. As a result, only a small number of elements and a tiny number of molecules can be cooled this way. In the case of micromirrors, the problem lies in the engineering of micromirrors that need to satisfy a large number of constraints---these include a high mechanical Q-factor, high reflectivity and very good optical quality, weak coupling to the substrate, etc.---in order to enable efficient cooling. During the course of this thesis, I will draw these two sides of laser cooling closer together by means of a single, generically applicable scattering theory that can be used to explain the interaction between light and matter at a very general level. I use this `transfer matrix' formalism to explore the use of the retarded dipole--dipole interaction as a means of both enhancing the efficiency of micromirror cooling systems and rendering the laser cooling of atoms and molecules less species selective. In particular, I identify the `external cavity cooling' mechanism, whereby the use of an optical memory in the form of a resonant element (such as a cavity), outside which the object to be cooled sits, can potentially lead to the construction of fully integrated optomechanical systems and even two-dimensional arrays of translationally cold atoms, molecules or even micromirrors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pathways of biotransformation of 4-fluorobiphenyl (4FBP) by the ectomycorrhizal fungus Tylospora fibrilosa and several other mycorrhizal fungi were investigated by using (19)F nuclear magnetic resonance (NMR) spectroscopy in combination with (14)C radioisotope-detected high-performance liquid chromatography ((14)C-HPLC). Under the conditions used in this study T. fibrillosa and some other species degraded 4FBP. (14)C-HPLC profiles indicated that there were four major biotransformation products, whereas (19)F NMR showed that there were six major fluorine-containing products. We confirmed that 4-fluorobiphen-4'-ol and 4-fluorobiphen-3'-ol were two of the major products formed, but no other products were conclusively identified. There was no evidence for the expected biotransformation pathway (namely, meta cleavage of the less halogenated ring), as none of the expected products of this route were found. To the best of our knowledge, this is the first report describing intermediates formed during mycorrhizal degradation of halogenated biphenyls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the discovery of four new transiting hot jupiters, detected mainly from SuperWASP-North and SOPHIE observations. These new planets, WASP-52b, WASP-58b, WASP-59b, and WASP-60b, have orbital periods ranging from 1.7 to 7.9 days, masses between 0.46 and 0.94 M_Jup, and radii between 0.73 and 1.49 R_Jup. Their G1 to K5 dwarf host stars have V magnitudes in the range 11.7-13.0. The depths of the transits are between 0.6 and 2.7%, depending on the target. With their large radii, WASP-52b and 58b are new cases of low-density, inflated planets, whereas WASP-59b is likely to have a large, dense core. WASP-60 shows shallow transits. In the case of WASP-52 we also detected the Rossiter-McLaughlin anomaly via time-resolved spectroscopy of a transit. We measured the sky-projected obliquity lambda = 24 (+17/-9) degrees, indicating that WASP-52b orbits in the same direction as its host star is rotating and that this prograde orbit is slightly misaligned with the stellar equator. These four new planetary systems increase our statistics on hot jupiters, and provide new targets for follow-up studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In conventional milling, the aleurone layer is combined with the bran fraction. Studies indicate that the bran fraction of wheat contains the majority of the phytonutrients betaine and choline, with relatively minor concentrations in the refined flour. This present study suggests that the wheat aleurone layer (Triticum aestivum L. cv. Tiger) contains the greatest concentration of both betaine and choline (1553.44 and 209.80 mg/100 g of sample, respectively). The bran fraction contained 866.94 and 101.95 mg/100 g of sample of betaine and choline, respectively, while the flour fraction contained 23.30 mg/100 g of sample (betaine) and 28.0 mg/100 g of sample (choline). The betaine content for
the bran was lower, and the choline content was higher compared to previous studies, although it is known that there is large variation in betaine and choline contents between wheat cultivars. The ratio of betaine/choline in the aleurone fraction was approximately 7:1; in the bran, the ratio was approximately 8:1; and in the flour fraction, the ratio was approximately 1:1. The study further
emphasizes the superior phytonutrient composition of the aleurone layer.
INTRODUCTION
Wheat is a valuable source of betaine, choline (1, 2), B
vitamins, vitamin E, and a number of minerals, including iron,
zinc, magnesium, and phosphorus (3). Epidemiological studies
indicate that whole-grain consumption is protective against
several chronic diseases (4-12). It has not been fully elucidated
how whole-grain cereals or specific fractions (13) exert their
protective effect, but it is thought to be due to their content of
several nutrients associated with the reduced risk of disease.
Conventionally, whole grain is separated during milling into
bran, germ, and flour (14). The nutrient composition of these
fractions differ markedly; refined wheat flour contains approximately
50% less vitamins and minerals than whole-grain
flour (