994 resultados para generalized variance vertical bar S vertical bar chart


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present measurements of the charge balance function, from the charged particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au collisions at root S(NN) = 200 GeV using the STAR detector at RHIC. We observe that the balance function is boost-invariant within the pseudorapidity coverage vertical bar-1.3, 1.3 vertical bar. The balance function properly scaled by the width of the observed pseudorapidity window does not depend on the position or size of the pseudorapidity window. This scaling property also holds for particles in different transverse momentum ranges. In addition, we find that the width of the balance function decreases monotonically with increasing transverse momentum for all centrality classes. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the beam-energy and system-size dependence of phi meson production (using the hadronic decay mode phi -> K(+) K(-)) by comparing the new results from Cu + Cu collisions and previously reported Au + Au collisions at root s(NN) = 62.4 and 200 GeV measured in the STAR experiment at RHIC. Data presented in this Letter are from mid-rapidity (vertical bar y vertical bar < 0.5) for 0.4 < p(T) < 5 GeV/c. At a given beam energy, the transverse momentum distributions for phi mesons are observed to be similar in yield and shape for Cu + Cu and Au + Au colliding systems with similar average numbers of participating nucleons. The phi meson yields in nucleus-nucleus collisions, normalized by the average number of participating nucleons, are found to be enhanced relative to those from p + p collisions. The enhancement for phi mesons lies between strange hadrons having net strangeness = 1 (K(-) and <(A)over bar>) and net strangeness = 2 (Xi). The enhancement for phi mesons is observed to be higher at root s(NN) = 200 GeV compared to 62.4 GeV. These observations for the produced phi(s (s) over bar) mesons clearly suggest that, at these collision energies, the source of enhancement of strange hadrons is related to the formation of a dense partonic medium in high energy nucleus-nucleus collisions and cannot be alone due to canonical suppression of their production in smaller systems. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider (for the first time) the ratios of doubly heavy baryon masses (spin 3/2 over spin 1/2 and SU(3) mass-splittings) using double ratios of sum rules (DRSR), which are more accurate than the usual simple ratios often used in the literature for getting the hadron masses. In general, our results agree and compete in precision with potential model predictions. In our approach, the alpha(s) corrections induced by the anomalous dimensions of the correlators are the main sources of the Xi(QQ)*-Xi(QQ) mass-splittings, which seem to indicate a 1/M(Q) behaviour and can only allow the electromagnetic decay Xi(QQ)* -> Xi(QQ) + gamma but not to Xi(QQ) + pi. Our results also show that the SU(3) mass-splittings are (almost) independent of the spin of the baryons and behave approximately like 1/M(Q), which could be understood from the QCD expressions of the corresponding two-point correlator. Our results can improved by including radiative corrections to the SU(3) breaking terms and can be tested, in the near future, at Tevatron and LHCb. (C) 2010 Published by Elsevier B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The sigma model describing the dynamics of the superstring in the AdS(5) x S(5) background can be constructed using the coset PSU(2, 2 vertical bar 4)/SO(4, 1) x SO(5). A basic set of operators in this two dimensional conformal field theory is composed by the left invariant currents. Since these currents are not (anti) holomorphic, their OPE`s is not determined by symmetry principles and its computation should be performed perturbatively. Using the pure spinor sigma model for this background, we compute the one-loop correction to these OPE`s. We also compute the OPE`s of the left invariant currents with the energy momentum tensor at tree level and one loop.