1000 resultados para gaussian mirror resonator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-speed optical clock recovery, demultiplexing and data regeneration will be integral parts of any future photonic network based on high bit-rate OTDM. Much research has been conducted on devices that perform these functions, however to date each process has been demonstrated independently. A very promising method of all-optical switching is that of a semiconductor optical amplifier-based nonlinear optical loop mirror (SOA-NOLM). This has various advantages compared with the standard fiber NOLM, most notably low switching power, compact size and stability. We use the SOA-NOLM as an all-optical mixer in a classical phase-locked loop arrangement to achieve optical clock recovery, while at the same time achieving data regeneration in a single compact device

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary form only given. Both dispersion management and the use of a nonlinear optical loop mirror (NOLM) as a saturable absorber can improve the performance of a soliton-based communication system. Dispersion management gives the benefits of low average dispersion while allowing pulses with higher powers to propagate, which helps to suppress Gordon-Haus timing jitter without sacrificing the signal-to-noise ratio. The NOLM suppresses the buildup of amplifier spontaneous emission noise and background dispersive radiation which, if allowed to interact with the soliton, can lead to its breakup. We examine optical pulse propagation in dispersion-managed (DM) transmission system with periodically inserted in-line NOLMs. To describe basic features of the signal transmission in such lines, we develop a simple theory based on a variational approach involving Gaussian trial functions. It, has already been proved that the variational method is an extremely effective tool for description of DM solitons. In the work we manage to include in the variational description the point action of the NOLM on pulse parameters, assuming that the Gaussian pulse shape is inherently preserved by propagation through the NOLM. The obtained results are verified by direct numerical simulations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel device configuration is used to demonstrate wavelength-confined, a bandpass, switching in a nonlinear-optical loop mirror (WOLM). Demonstrated is a self-switching in the soliton regime using a partially reflecting Bragg grating as a wavelength-dependent loss element. Two wavelength operation in which a signal is switched through the use of cross phase modulation, are demonstrated. Observed is the operation of the device confined to wavelengths defined by the grating reflection band.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The posterior inferior frontal gyrus (pIFG) and anterior inferior parietal lobule (aIPL) form the core regions of the human “mirror neuron system” that matches an observed movement onto its internal motor representation. We used event-related functional MRI to examine whether simple intransitive finger movements evoke “mirror activity” in the pIFG and aIPL. In separate sessions, participants either merely observed visuospatial stimuli or responded to them as quickly as possible with a spatially compatible finger movement. A picture of a relaxed hand with static dots on the tip of the index and little finger was continuously presented as high-level baseline. Four types of stimuli were presented in a pseudorandom order: a color change of a dot, a moving finger, a moving dot, or a simultaneous finger-dot movement. Dot movements were spatially and kinematically matched to finger movements. Participants were faster at imitating a finger movement than performing the same movement in response to a moving dot or a color change of a dot. Though imitative responses were facilitated, fMRI revealed no additional “mirror activity” in the pIFG and aIPL during the observation or imitation of finger movements as opposed to observing or responding to a moving dot. Mere observation of a finger movement alone failed to induce significant activation of the pIFG and aIPL. The lack of a signature of “mirror neuron activity” in the inferior frontoparietal cortex is presumably due to specific features of the task which may have favored stimulus–response mapping based on common spatial coding. We propose that the responsiveness of human frontoparietal mirror neuron areas to simple intransitive movements critically depends on the experimental context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with "negative absorption" of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors-random distributed feedback fibre laser-was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100km. Although an effective reflection due to the Rayleigh scattering is extremely small (~0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the generation of a stationary near-Gaussian beam with a narrow spectrum. A random distributed feedback fibre laser has efficiency and performance that are comparable to and even exceed those of similar conventional fibre lasers. The key features of the generated radiation of random distributed feedback fibre lasers include: a stationary narrow-band continuous modeless spectrum that is free of mode competition, nonlinear power broadening, and an output beam with a Gaussian profile in the fundamental transverse mode (generated both in single mode and multi-mode fibres).This review presents the current status of research in the field of random fibre lasers and shows their potential and perspectives. We start with an introductory overview of conventional distributed feedback lasers and traditional random lasers to set the stage for discussion of random fibre lasers. We then present a theoretical analysis and experimental studies of various random fibre laser configurations, including widely tunable, multi-wavelength, narrow-band generation, and random fibre lasers operating in different spectral bands in the 1-1.6μm range. Then we discuss existing and future applications of random fibre lasers, including telecommunication and distributed long reach sensor systems. A theoretical description of random lasers is very challenging and is strongly linked with the theory of disordered systems and kinetic theory. We outline two key models governing the generation of random fibre lasers: the average power balance model and the nonlinear Schrödinger equation based model. Recently invented random distributed feedback fibre lasers represent a new and exciting field of research that brings together such diverse areas of science as laser physics, the theory of disordered systems, fibre optics and nonlinear science. Stable random generation in optical fibre opens up new possibilities for research on wave transport and localization in disordered media. We hope that this review will provide background information for research in various fields and will stimulate cross-disciplinary collaborations on random fibre lasers. © 2014 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of single-soliton or bound-multisoliton states from a single linearly chirped Gaussian pulse in quasi-lossless and lossy fiber spans is examined. The conversion of an input-chirped pulse into soliton states is carried out by virtue of the so-called direct Zakharov-Shabat spectral problem, the solution of which allows one to single out the radiative (dispersive) and soliton constituents of the beam and determine the parameters of the emerging bound state(s). We describe here how the emerging pulse characteristics (the number of bound solitons, the relative soliton power) depend on the input pulse chirp and amplitude. © 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human mirror neuron system (MNS) has recently been a major topic of research in cognitive neuroscience. As a very basic reflection of the MNS, human observers are faster at imitating a biological as compared with a non-biological movement. However, it is unclear which cortical areas and their interactions (synchronization) are responsible for this behavioural advantage. We investigated the time course of long-range synchronization within cortical networks during an imitation task in 10 healthy participants by means of whole-head magnetoencephalography (MEG). Extending previous work, we conclude that left ventrolateral premotor, bilateral temporal and parietal areas mediate the observed behavioural advantage of biological movements in close interaction with the basal ganglia and other motor areas (cerebellum, sensorimotor cortex). Besides left ventrolateral premotor cortex, we identified the right temporal pole and the posterior parietal cortex as important junctions for the integration of information from different sources in imitation tasks that are controlled for movement (biological vs. non-biological) and that involve a certain amount of spatial orienting of attention. Finally, we also found the basal ganglia to participate at an early stage in the processing of biological movement, possibly by selecting suitable motor programs that match the stimulus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We find the probability distribution of the fluctuating parameters of a soliton propagating through a medium with additive noise. Our method is a modification of the instanton formalism (method of optimal fluctuation) based on a saddle-point approximation in the path integral. We first solve consistently a fundamental problem of soliton propagation within the framework of noisy nonlinear Schrödinger equation. We then consider model modifications due to in-line (filtering, amplitude and phase modulation) control. It is examined how control elements change the error probability in optical soliton transmission. Even though a weak noise is considered, we are interested here in probabilities of error-causing large fluctuations which are beyond perturbation theory. We describe in detail a new phenomenon of soliton collapse that occurs under the combined action of noise, filtering and amplitude modulation. © 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The control of Light velocity is theoretically and experimentally demonstrated in a θ-shaped microfiber resonator with coupled-resonator-induced transparency. By adjusting the structure parameters, group delays from -60ps to 200ps are achieved in the all-fiber resonator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study was performed on non-Gaussian statistics of an optical soliton in the presence of amplified spontaneous emission. An approach based on the Fokker-Planck equation was applied to study the optical soliton parameters in the presence of additive noise. The rigorous method not only allowed to reproduce and justify the classical Gordon-Haus formula but also led to new exact results.