995 resultados para fusion gene
Biased gene conversion and GC-content evolution in the coding sequences of reptiles and vertebrates.
Resumo:
Mammalian and avian genomes are characterized by a substantial spatial heterogeneity of GC-content, which is often interpreted as reflecting the effect of local GC-biased gene conversion (gBGC), a meiotic repair bias that favors G and C over A and T alleles in high-recombining genomic regions. Surprisingly, the first fully sequenced nonavian sauropsid (i.e., reptile), the green anole Anolis carolinensis, revealed a highly homogeneous genomic GC-content landscape, suggesting the possibility that gBGC might not be at work in this lineage. Here, we analyze GC-content evolution at third-codon positions (GC3) in 44 vertebrates species, including eight newly sequenced transcriptomes, with a specific focus on nonavian sauropsids. We report that reptiles, including the green anole, have a genome-wide distribution of GC3 similar to that of mammals and birds, and we infer a strong GC3-heterogeneity to be already present in the tetrapod ancestor. We further show that the dynamic of coding sequence GC-content is largely governed by karyotypic features in vertebrates, notably in the green anole, in agreement with the gBGC hypothesis. The discrepancy between third-codon positions and noncoding DNA regarding GC-content dynamics in the green anole could not be explained by the activity of transposable elements or selection on codon usage. This analysis highlights the unique value of third-codon positions as an insertion/deletion-free marker of nucleotide substitution biases that ultimately affect the evolution of proteins.
Resumo:
Inter-individual differences in gene expression are likely to account for an important fraction of phenotypic differences, including susceptibility to common disorders. Recent studies have shown extensive variation in gene expression levels in humans and other organisms, and that a fraction of this variation is under genetic control. We investigated the patterns of gene expression variation in a 25 Mb region of human chromosome 21, which has been associated with many Down syndrome (DS) phenotypes. Taqman real-time PCR was used to measure expression variation of 41 genes in lymphoblastoid cells of 40 unrelated individuals. For 25 genes found to be differentially expressed, additional analysis was performed in 10 CEPH families to determine heritabilities and map loci harboring regulatory variation. Seventy-six percent of the differentially expressed genes had significant heritabilities, and genomewide linkage analysis led to the identification of significant eQTLs for nine genes. Most eQTLs were in trans, with the best result (P=7.46 x 10(-8)) obtained for TMEM1 on chromosome 12q24.33. A cis-eQTL identified for CCT8 was validated by performing an association study in 60 individuals from the HapMap project. SNP rs965951 located within CCT8 was found to be significantly associated with its expression levels (P=2.5 x 10(-5)) confirming cis-regulatory variation. The results of our study provide a representative view of expression variation of chromosome 21 genes, identify loci involved in their regulation and suggest that genes, for which expression differences are significantly larger than 1.5-fold in control samples, are unlikely to be involved in DS-phenotypes present in all affected individuals.
Resumo:
Wounding in multicellular eukaryotes results in marked changes in gene expression that contribute to tissue defense and repair. Using a cDNA microarray technique, we analyzed the timing, dynamics, and regulation of the expression of 150 genes in mechanically wounded leaves of Arabidopsis. Temporal accumulation of a group of transcripts was correlated with the appearance of oxylipin signals of the jasmonate family. Analysis of the coronatine-insensitive coi1-1 Arabidopsis mutant that is also insensitive to jasmonate allowed us to identify a large number of COI1-dependent and COI1-independent wound-inducible genes. Water stress was found to contribute to the regulation of an unexpectedly large fraction of these genes. Comparing the results of mechanical wounding with damage by feeding larvae of the cabbage butterfly (Pieris rapae) resulted in very different transcript profiles. One gene was specifically induced by insect feeding but not by wounding; moreover, there was a relative lack of water stress-induced gene expression during insect feeding. These results help reveal a feeding strategy of P. rapae that may minimize the activation of a subset of water stress-inducible, defense-related genes.
Resumo:
SUMMARY: Large sets of data, such as expression profiles from many samples, require analytic tools to reduce their complexity. The Iterative Signature Algorithm (ISA) is a biclustering algorithm. It was designed to decompose a large set of data into so-called 'modules'. In the context of gene expression data, these modules consist of subsets of genes that exhibit a coherent expression profile only over a subset of microarray experiments. Genes and arrays may be attributed to multiple modules and the level of required coherence can be varied resulting in different 'resolutions' of the modular mapping. In this short note, we introduce two BioConductor software packages written in GNU R: The isa2 package includes an optimized implementation of the ISA and the eisa package provides a convenient interface to run the ISA, visualize its output and put the biclusters into biological context. Potential users of these packages are all R and BioConductor users dealing with tabular (e.g. gene expression) data. AVAILABILITY: http://www.unil.ch/cbg/ISA CONTACT: sven.bergmann@unil.ch
Resumo:
INTRODUCTION: Common variation in the CHRNA5-CHRNA3-CHRNB4 gene region is robustly associated with smoking quantity. Conversely, the association between one of the most significant single nucleotide polymorphisms (SNPs; rs1051730 within the CHRNA3 gene) with perceived difficulty or willingness to quit smoking among current smokers is unknown. METHODS: Cross-sectional study including current smokers, 502 women, and 552 men. Heaviness of smoking index (HSI), difficulty, attempting, and intention to quit smoking were assessed by questionnaire. RESULTS: The rs1051730 SNP was associated with increased HSI (age, gender, and education-adjusted mean ± SE: 2.6 ± 0.1, 2.2 ± 0.1, and 2.0 ± 0.1 for AA, AG, and GG genotypes, respectively, p < .01). Multivariate logistic regression adjusting for gender, age, education, leisure-time physical activity, and personal history of cardiovascular or lung disease showed rs1051730 to be associated with higher smoking dependence (odds ratio [OR] and 95% CI for each additional A-allele: 1.38 [1.11-1.72] for smoking more than 20 cigarette equivalents/day; 1.31 [1.00-1.71] for an HSI ≥5 and 1.32 [1.05-1.65] for smoking 5 min after waking up) and borderline associated with difficulty to quit (OR = 1.29 [0.98-1.70]), but this relationship was no longer significant after adjusting for nicotine dependence. Also, no relationship was found with willingness (OR = 1.03 [0.85-1.26]), attempt (OR = 1.00 [0.83-1.20]), or preparation (OR = 0.95 [0.38-2.38]) to quit. Similar findings were obtained for other SNPs, but their effect on nicotine dependence was no longer significant after adjusting for rs1051730. Conclusions: These data confirm the effect of rs1051730 on nicotine dependence but failed to find any relationship with difficulty, willingness, and motivation to quit.