995 resultados para fluido peritoneal
Resumo:
Here we investigated the effect of lifelong supplementation of the diet with coconut fat (CO, rich in saturated fatty acids) or fish oil (170, rich in n-3 polyunsaturated fatty acids) on tumor growth and lactate production from glucose in Walker 256 tumor cells, peritoneal macrophages, spleen, and gut-associated lymphocytes. Female Wistar rats were supplemented with CO or FO prior to mating and then throughout pregnancy and gestation and then the male offspring were supplemented from weaning until 90 days of age. Then they were inoculated subcutaneously with Walker 256 tumor cells. Tumor weight at 14 days in control rats (those fed standard chow) and CO supplemented was approximately 30 g. Supplementation of the diet with FO significantly reduced tumor growth by 76%. Lactate production (nmol h(-1) mg(-1) protein) from glucose by Walker 256 cells in the group fed regular chow (W) was 381.8 +/- 14.9. Supplementation with coconut fat (WCO) caused a significant reduction in lactate production by 1.6-fold and with fish oil (WFO) by 3.8-fold. Spleen lymphocytes obtained from W and WCO groups had markedly increased lactate production (553 +/- 70 and 635 +/- 150) when compared to non-tumor-bearing rats (similar to 260 +/- 30). FO supplementation reduced significantly the lactate production (297 +/- 50). Gut-associated lymphocytes obtained from W and WCO groups increased lactate production markedly (280 +/- 31 and 276 +/- 25) when compared to non-tumor-bearing rats (similar to 90 +/- 18). FO supplementation reduced significantly the lactate production (168 +/- 14). Lactate production by peritoneal macrophages was increased by tumor burden but there was no difference between the groups fed the various diets. Lifelong consumption of FO protects against tumor growth and modifies glucose metabolism in Walker tumor cells and lymphocytes but not in macrophages. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Previous studies have reported that chronic supplementation with shark liver oil (SLO) improves immune response of lymphocyte, macrophage and neutrophil in animal models and humans. In a similar manner, exercise training also stimulates the immune system. However, we are not aware of any study about the association of exercise and SLO supplementation on immune response. Thus, our main goal was to investigate the effect of chronic supplementation with SLO on immune responses of exercise-trained rats. Male Wistar rats were divided into four groups: sedentary with no supplementation (SED, n = 20), sedentary with SLO supplementation (SEDslo, n = 20), exercised (EX, n = 17) and exercised supplemented with SLO (EXslo, n = 19). Rats swam for 6 weeks, 1.5 h/day, in water at 32 +/- A 1A degrees C, with a load of 6.0% body weight attached to the thorax of rat. Animals were killed 48 h after the last exercise session. SLO supplementation did not change phagocytosis, lysosomal volume, superoxide anion and hydrogen peroxide production by peritoneal macrophages and blood neutrophils. Thymus and spleen lymphocyte proliferation were significantly higher in SEDslo, EX, and EXslo groups compared with SED group (P < 0.05). Gut-associated lymphocyte proliferation, on the other hand, was similar between the four experimental groups. Our findings show that SLO and EX indeed are able to increase lymphocyte proliferation, but their association did not induce further stimulation in the adaptive immune response and also did not modify innate immunity.
Resumo:
This study investigated the effect of exercise on glutamine metabolism in macrophages of trained rats. Rats were divided into three groups: sedentary (SED); moderately trained (MOD) rats that were swim trained 1 h/day, 5 days/week for 6 weeks; and exhaustively trained (EXT) rats that were similarly trained as MOD for 5 weeks and, in the 6th week, trained in three 1-h sessions/day with 150 min of rest between sessions. The animals swam with a load equivalent to 5.5% of their body weight and were killed 1 h after the last exercise session. Cells were collected, and glutamine metabolism in macrophage and function were assayed. Exercise increased phagocytosis in MOD when compared to SED (34.48 +/- 1.79 vs 15.21 +/- 2.91%, P < 0.05); however, H(2)O(2) production was higher in MOD (75.40 +/- 3.48 nmol h x 10(5) cell(-1)) and EXT (79.20 +/- 1.18 nmol h x 10(5) cell(-1)) in relation to SED (32.60 +/- 2.51 nmol h x 10(5) cell(-1), P < 0.05). Glutamine consumption increased in MOD and EXT (26.53 +/- 3.62 and 19.82 +/- 2.62 nmol h x 10(5) cell(-1), respectively) relative to SED (6.72 +/- 0.57 nmol h x 10(5) cell(-1), P < 0.05). Aspartate increased in EXT (9.72 +/- 1.14 nmol h x 10(5) cell(-1)) as compared to SED (1.10 +/- 0.19 nmol h x 10(5) cell(-1), P < 0.05). Glutamine decarboxylation was increased in MOD (12.10 +/- 0.27 nmol h x 10(5) cell(-1)) and EXT (16.40 +/-\ 2.17 nmol h x 10(5) cell(-1)) relative to SED (1.10 +/- 0.06 nmol h x 10(5) cell(-1), P < 0.05). This study suggests an increase in macrophage function post-exercise, which was supported by enhanced glutamine consumption and metabolism, and highlights the importance for glutamine after exercise.
Resumo:
Purpose: Exercise training restores innate immune system cell function in post-myocardial infarction (post-MI) rats. However, studies of the involvement of lymphocyte (Ly) in the setting of the congestive heart failure (CHF) are few. To address this issue, we investigated the function of Ly obtained from cervical lymph nodes from post-MI CHF rats submitted to treadmill running training. Methods: Twenty-five male Wistar rats were randomly assigned to the following groups: rats submitted to ligation of the left coronary artery, which were sedentary (MI-S, N= 7, only limited activity) or trained (MI-T, N= 6, on a treadmill (0% grade at 13-20 m.m(-1)) for 60 min.d(-1), 5 d.wk(-1), for 8-10 wk); or sham-operated rats, which were sedentary (sham-S, N = 6) or trained (sham-T, N = 6). The incorporation of [2-C-14]-thymidine by Ly cultivated in the presence of concanavalin A (Con A) and lipopolysaccharide (LPS), cytokine production by Ly cultivated in the presence of phytohemagglutinin (PHA), and plasma concentration of glutamine were assessed in all groups, 48 h after the last exercise session. Results: Proliferative capacity was increased, following incubation with Con-A in the MI groups, when compared with the sham counterparts. When incubated in the presence of PHA, MI-S produced more IL-4 (96%) than sham-S (P < 0.001). The training protocol induced a 2.2-fold increase in the production of interleukin-2 (P < 0.001) of the cells obtained from the cervical lymph nodes of MI-T, compared with MI-S. Conclusion: The moderate endurance training protocol caused an increase in IL-2 production, and a trend toward the reversion of the Th-1/Th-2 imbalance associated with IL-4 production increased in the post-MI CHF animal model.
Resumo:
The incidence of melanoma is increasing worldwide. It is one of the leading cancers in pregnancy and the most common malignancy to metastasize to placenta and fetus. There are no publications about experimental models of melanoma and pregnancy. We propose a new experimental murine model to study the effects of melanoma on pregnancy and its metastatic process. We tested several doses of melanoma cells until we arrived at the optimal dose, which produced tumor growth and allowed animal survival to the end of pregnancy. Two control groups were used: control (C) and stress control (SC) and three different routes of inoculation: intravenous (IV), intraperitoneal (IP) and subcutaneous (SC). All the fetuses and placentas were examined macroscopically and microscopically. The results suggest that melanoma is a risk factor for intrauterine growth restriction but does not affect placental weight. When inoculated by the SC route, the tumor grew only in the site of implantation. The IP route produced peritoneal tumoral growth and also ovarian and uterine metastases in 60% of the cases. The IV route produced pulmonary tumors. No placental or fetal metastases were obtained, regardless of the inoculation route. The injection of melanoma cells by any route did not increase the rate of fetal resorptions. Surprisingly, animals in the IV groups had no resorptions and a significantly higher number of fetuses. This finding may indicate that tumoral factors released in the host organism to favor tumor survival may also have a pro-gestational action and consequently improve the reproductive performance of these animals.