996 resultados para filtration membrane


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The textile industry plays an important role in the world economy as well as our daily life. However, the industry consuming a large quantity of water and generating huge amount of wastewater are unsustainable to the conservation of our precious resources and environment and need improvement. The wastewater, especially the one from spent cotton reactive dyebaths, contains high salt content, various dyes and high alkalinity. This study was carried out to investigate the feasibility of membrane filtration treating spent cotton reactive dye baths. A stirred cell with nanofiltration membrane was used aiming at reusing the reclaimed water. Spent dyebath solutions were synthesized containing hydrolyzed C. I. Reactive Black 5 and sodium chloride. When a piece of membrane was used repeatedly it was expected the flux would decrease after each usage due to fouling of impurities. However, it was found that the water flux increased while dye rejection decreased after each run. At pH 10, the dye rejection decreased significantly. It was proposed that the pore sizes of membrane might have changed during membrane filtration. An equation was derived calculating the possible changes of pore sizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During dyeing, salts are placed in a dyebath to aid the fixation of various dyes on to the fabric while bases are added to raise the pH from around neutral to pH 11. Afterwards, the used dyebath solution, called dyebath spent liquor, is discharged with almost all the salts and bases added as well as unfixed dyes. Consequently, a lot of raw materials are lost in the waste stream ending up in the environment as pollutants. In this study, possibilities of reusing water and salts of dyebathes were investigated, using a nanofiltration membrane. When the salt concentration in the spent liquor was increased from 10 to 80 g/L, the salt rejection by membrane was found to decrease initially; however, the salt rejection increased over the time, which was not expected. The aggregation of dye was also studied and found to decrease in the concentrate when the salt concentration was increased. This may be due to the aggregation of salt in the concentrate, which explains the increase in salt rejection. This information is useful for the textile industry in evaluating the treated water quality for the purpose of reuse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compared to the Conventional Activated Sludge Process (ASP), Membrane Bioreactors (MBRs) have proven their superior performance in wastewater treatment and reuse during the past two decades. Further, MBRs have wide array of applications such as the removal of nutrients, toxic and persistent organic pollutants (POPs), which are impossible or difficult to remove using ASP. However, fouling of membrane is one of the main drawbacks to the widespread application of MBR technology and Extra-cellular Polymeric Substances (EPS) secreted by microbes are considered as one of the major foulants, which will reduce the flux (L/m2/h) through the membrane. Critical flux is defined as the flux above which membrane cake or gel layer formation due to deposition of EPS and other colloids on the membrane surface occurs. Thus, one of the operating strategies to control the fouling of MBRs is to operate those systems below the critical flux (at Sub-Critical flux). This paper discusses the critical flux results, which were obtained from short-term common flux step method, for a lab-scale MBR system treating Ametryn. This study compares the critical flux values that were obtained by operating the MBR system (consisting of a submerged Hollow-Fibre membrane with pore size of 0.4μm and effective area of 0.2m2) at different operating conditions and mixed liquor properties. This study revealed that the critical flux values found after the introduction of Ametryn were significantly lower than those of obtained before adding Ametryn to the synthetic wastewater. It was also revealed that the production of carbohydrates (in SMP) is greater than proteins, subsequent to the introduction of Ametryn and this may have influenced the membrane to foul more. It was also observed that a significant removal (40-60%) of Ametryn from this MBR during the critical flux determination experiments with 40 minutes flux-step duration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous mathematical models have been developed to evaluate both initial and transient stage removal efficiency of deep bed filters. Microscopic models either using trajectory analysis or convective-diffusion equations were used to compute the initial removal efficiency. These models predicted the removal efficiency under favorable filtration conditions quantitatively, but failed to predict the removal efficiency under unfavorable conditions. They underestimated the removal efficiency under unfavorable conditions. Thus, semi-empirical formulations were developed to compute initial removal efficiencies under unfavorable conditions. Also, correction for the adhesion of particles onto filter grains improved the results obtained for removal efficiency from the trajectory analysis. Macroscopic models were used to predict the transient stage removal efficiency of deep bed filters. O’Melia and Ali’s model assumed that the particle removal is due to filter grains as well as the particles that are already deposited onto the filter grain. Thus, semi-empirical models were used to predict the ripening of filtration. Several modifications were made to the model developed by O’Melia and Ali to predict the deterioration of particle removal during the transient stages of filtration. Models considering the removal of particles under favorable conditions and the accumulation of charges on the filter grains during the transient stages were also developed. This paper evaluates those models and their applicability under different operating conditions of filtration.